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Introduction

The topic of self-stabilizing computing systems has received growing auention in recent
years. A system is called self-stabilizing if it is guaranteed to converge to a safe state from
any state within a finite number of steps. The interest in these systems derives in part from a
desire to find a coherent approach to fault tolerance (a self-stabilizing system would recover
from a hardware fault that places the system in an unsafe state) and in part from the applica-
bility of the concept to reactive systems (where the idea of an initial state is less important
than in terminating sequential computations).

The Software Technology Program at MCC held a Workshop on Self-Stabilizing Systems in
Austin on August 11, 1989. The Workshop attracted an enthusiastic international audience
(see attached List of Attendees), which heard eight presentations on various approaches to
the subject. Although most of the papers will be submitted to journals and other publications,
this Proceedings collects them into a single volume for the convenience of the attendees and
other interested researchers.

Michael Evangelist
Shmuel Katz
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Workshop on Self-Stabilizing Systems
Software Technology Program, MCC
Austin, Texas
August 11, 1989
FINAL PROGRAM

9:00-9:45  "Convergence of Iteration Systems",
Anish Arora, Paul Attie, Michael Evangelist, and Mohamed Gouda.

9:45-10:30 "Self Stabilization of Dynamic Systems".
Shlomo Moran. Amos Israeli. and Shlomi Dolev.

10:30-10:45 Break.

10:45-11:30 "Self-stabilizing Extensions for Message-passing Systems",
Shmuel Katz and Ken Perry

11:30-12:15 "Proofs of Two Self-Stabilizing Termination Detection Algorithms'",
Charles Richter.

12:15-1:30 Carered Lunch.

1:30-2:15  "On Relaxing Interleaving Assumptions".
James Burns. Mohamed Gouda, and Raymond Miller.

"Stabilization and Pseudo-Stabilization".
James Burns, Mohamed Gouda, and Raymond Miller.
(paper not available at the time of preparation of these proceedings)

2:15-3:00 "The Instability of Self-Stabilazation",
Mohamed Gouda, Rodney Howell and Louis Rosier.

3:00-3:45 Break.

3:15-4:00 "On Self-Stabilization, Nondeterminism. and Inherent Fault Tolerance".
Farokh Bastani, I-Ling Yen. and Yi Zhao.

4:00-5:00 OpenDiscussion. Future Meetings.
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Convergence of Iteration Systems!

Anish ARORAM? Paul ATTIE? Michael EVANGELIST!
Mohamed GOUDA 2

Abstract

An iteration system is a set of assignment statements whose computation proceeds in steps: at each
step, an arbitrary subset of the statements is executed in parallel. The set of statements thus executed
may differ at each step; however, it is required that each statement is executed infinitely often along the
computation. The convergence of such systems (to a fixed point) is typically verified by showing that
the value of a given variant function is decreased by each step that causes a state change. Such a proof
requires an exponential number of cases (in the number of assignment statements) to be considered.
In this paper, we present alternative methods for verifying the convergence of iteration systems. In

most of these methods, upto a linear number of cases need to be considered.

! 1. Microelectronics and Computer Technology Corporation, Austin

2. Department of Computer Sciences, The University of Texas at Austin






1 Introduction

Iteration systems are a useful abstraction for computational, physical and biological systems that in-
volve “truly concurrent” events. In computing science, they can be used to represent self-stabilizing
programs, neural networks, transition systems and array processors. This wide applicability derives from

the simplicity and generality of the formalism.

Informally, an iteration system is defined by a finite set of variables, V. Associated with each variable
is a function called its update function. The computation of the system proceeds in steps. At each step,
the variables in an arbitrary subset of V are updated by assigning each variable the value obtained from
applying its update function to the current system state. The set of variables thus updated may differ at
each step; however, it is required that each variable in V be updated infinitely often.

In allowing an arbitrary subset of variables to be updated at each step, our formalism admits a large
number of widely varying computations. These range from the sequential computations in which exactly
one variable is updated at every step to the parallel computation in which each variable is updated at
every step. By comparison, traditional semantics admit computations of lesser variety. For example,
interleaving requires one enabled event to be executed at each step (see, for instance, the work on CSP
[Hoa], UNITY [CM] and I/O Automata [Lyn]), whereas maximal parallelism requires that all enabled

events are executed at every step (see, for instance, the work on systolic arrays [KL] and cellular automata
[Wol]).

A property of interest in iteration systems is convergence. This property is useful in studying the self-
stabilization of distributed programs (cf. [Dij1], [BGW], [Dij] and [GE]), convergence of iterative methods
in numerical analysis (cf. [Rob] and [BT]), and self-organization in neural networks (cf. [Koh] and [Arb]).
Informally, an iteration system is called convergent if on starting in an arbitrary state the system is
guaranteed to reach a fixed point; that is, a state in which no update can cause a state change. The
standard method for verifying that an iteration system is convergent is to exhibit a variant function (cf.
[Gri]) whose value is bounded from below and is decreased by each step that causes a state change. Since
any subset of the variables can be updated in a step, the number of cases that need to be considered
are 2" — 1, where n is the number of variables in the system. In this paper, we discuss new methods
for verifying the convergence of iteration systems. Nearly all these methods require upto n cases to be

considered.

The rest of this paper is organized as follows. In Section 2, we formally define iteration systems and their
dependency graphs. (The dependency graph of an iteration system captures the “depends on” relation



between the variables in the system.) In Section 3, we identify two classes of iteration systems, namely
those whose dependency graphs are acyclic or self-looping, and present a theorem that establishes efficient
proof obligations for verifying the convergence of these two classes. This theorem is then extended to
general, deterministic iteration systems in Section 4. In Section 5, we show that, with minor modifications,

our results continue to hold in nondeterministic iteration systems. Concluding remarks are in Section 6.

2 Iteration Systems
An iteration system, I, is defined by the pair (V, F), where

e V is a finite, nonempty set of variables. Each variable v in V has a predefined domain Q,. Let Q

denote the cartesian product of the domains of all variables in V.

o F is a set of “update” functions with exactly one function f, associated with each variable v in V,

where f, is a mapping from Q to Q,.

A state g of I is an element of . We adopt the notation g, to denote the value of variable v in state g.

A state g is called a fized point of I iff for each variable v in V, f,(q) = g.

A step of I is defined to be a subset of V; informally, a step identifies those variables that are updated
when the step is executed. A round of I is a minimal, finite sequence of steps with the property that each
variable in V is an element of at least one step in the round. A computation of I is an infinite sequence of
rounds. Notice that since each variable is updated at least once in every round, each variable is updated

infinitely often in every computation.

The application of a finite sequence of steps S to a state g, denoted Sog, is the state ¢’ defined inductively
as follows:
e if S is empty, then ¢’ = ¢

e if S is a single step, then for every variable v in V,

v

q,z{ folg) SifveES

gv , otherwise

e if S is the concatenation of two sequences § = §'; §” , then ¢' = §" 0 (5" 0 g).

A computation C is called convergent iff for every state g, there exists a finite prefix, 5, of C such that Sog

is a fixed point of . An iteration system is called convergent iff all of its computations are convergent.



As shown in the following examples of iteration systems, it is convenient to represent an iteration system
by a set of assignment statements, one for each variable. Each statement has the form (variable) :=

(corresponding update function). We will later prove each of these iteration systems to be convergent.

Example 1: (Greatest Common Divisor)
Let z, y and z be variables that range over the natural numbers. Then, the three assignment statements

z:=ifz>ythenz—yelsez

yi=ifz<ytheny—zelsey
z:

= if z = y then 0 else z + 1

define a convergent iteration system. At fixed point, the value of z is the greatest common divisor of the

initial values of z and y, and y = z and z = 0. D

Example 2: (Minimum of a bag)

Let z be an integer array of size n. Then, the following assignment statements:
z[1] := 23]
2[2] := min(z[2],z[1])

z[n] := min(z[n),z[n - 1])
define a convergent iteration system. At fixed point, the value of each z[i] is the minimum of the initial

values in the sub-array z[1}, z[2],..., z[1]. D

Example 3: (Shortest Path)
Consider the directed graph

It has four nodes 0-3, and four edges. Each edge is labeled with a non-negative integer constant denoting
its length. Associated with each node 1 is a variable v[i], of type record, that has two integer components,
first[i] and second[i]. The assignment statements

v[0] := (0,0)

v(l] := (a,Oj

v[2] := (b,0)

v[3] := if first[l]+c < first[2] + d then (first[1]+ c,1) else (first[2] + d,2)

3



define a convergent iteration system. At fixed point, each first[i] is the length of the shortest path from
node i to node 0, and second(i] is the nearest neighbor to node i along this path. Extending the above
system for an arbitrary directed graph is straightforward. D

The objective of this paper is to identify proof obligations that are sufficient to establish the convergence
of iteration systems. Towards this end, the following two definitions will prove useful shortly.

Let v and w be variables in V. We say v depends on w iff there exist two states g and ¢’ of I such that g
and ¢' differ only in their value of w and f,(¢) # f.(¢'). Informally, v depends on w iff a change in the

value of w can cause a change in the value assigned to v by its update function f,.

The dependency graph of I is a directed graph whose nodes correspond to the variables in V and whose
directed edges correspond to the depends on relation; that is, the set of nodes of the dependency graph
is {ny|v € V} and its set of directed edges is {(n,,ny)|v € V, w € V, and v depends on w}.

The dependency graphs for the iteration systems in Examples 1, 2 and 3 are as follows:

Nz ny[1]

L]

Nx[1] Nx[2] Nx[n]

n
Ny y Ny[2]

Henceforth, we shall use ‘variable’ and ‘node’ interchangeably when referring to the dependency graph of

an iteration system.

3 Convergence of Non-Cyclic Systems

An iteration system is called acyclic iff its dependency graph is acyclic. It is called self-looping iff its

dependency graph has one or more cycles, and all its cycles are self-loops.

In this section we state and prove a fundamental theorem concerning the convergence of acyclic and

self-looping iteration systems. The implications of this theorem are discussed subsequently.

Theorem 1:
If an iteration system is
(a) acyclic, then it is convergent, and if it is

(b) self-looping and has one convergent computation, then it is convergent.

4



Proof:
To prove the theorem we need to introduce the following new concepts: “rank”, “stable”, “#steps”, “1”,

and “l”.

For an acyclic or self-looping iteration system, define rank to be the function that assigns to each variable

v in V a positive integer as follows:
rank(v) = 1 + max {rank(w) | (w € VA v # w Avdepends on w)}

By convention, the value of “max”™ applied to the empty set is 0; thus, the rank of a variable that does
not depend on any other variable is 1. Notice that this definition is recursive and requires, in order to be
well-defined, that the dependency graph has no cycle of length two or greater. Therefore, this definition
applies only to acyclic and self-looping systems.

A variable v in V is stable in state g iff for every finite sequence of steps, S, the value of v in ¢ is the

same as its value in state Sogq.

Let #steps(C, g, k) denote the partial function that returns the number of steps in the minimal prefix §
of computation C such that every variable of rank at most k is stable in the state § o g. The value of
#steps(C, g, k) is undefined when no such prefix exists.

Let k be any positive integer, then C T k denotes the unique prefix of computation C that consists of
exactly k rounds, and C | k denotes the computation that results after removing the prefix C Tk from

computation C.

Proof of part (a):

The proof is by a straightforward induction on the rank of variables. We argue that after the application
of the first k rounds (k < |V|) of an arbitrary computation C to an arbitrary state g, all variables with
rank at most k are stable in the resulting state (C'Tk) o g. Since the rank of any variable in V' is at most
[V], it follows that after |V'| rounds the system is at a fixed point. For the base case, note that the update

functions of variables with rank = 1 are constant functions.

Proof of part (b):

We need to prove that if some computation C' is convergent then for an arbitrary computation C and an
arbitrary state g there exists a positive integer i such that all variables in V are stable in state (C 1) og;
that is, (CT1) o g is a fixed point.

The proof proceeds by induction on the rank k of variables. Let the induction hypothesis be:
Jivv (rank(v)<k-1 =  wvisstablein(C1i)ogq)

5



Note that as C' is convergent, #steps(C’, g, k) is well defined for every rank k.

Base Case: k = 1.

A variable whose rank is 1 depends on no other variable, therefore, the sequence of values it takes in
successive updates is a function only of the number of updates to it. Hence, it is necessarily stable after
#steps(C’, g, 1) updates to it in any computation starting in state g. Since each round contains at least

one update to every variable, each variables whose rank is 1 is stable in (C'1 #steps(C’,g,1))o0q.

Induction Step: k > 1.
Let ¢’ = (C'11) 0 g, where i is the least integer that satisfies the induction hypothesis. Hence,

Vv (rank(v)<k-1 = wvisstableing’) (1)

Applying C’ to ¢', we know that every variable with rank < k will be stable within #steps(C’,¢’, k)
updates to that variable
Vv (rank(v)<k =  wvisstablein (C'T #steps(C',q',k))oq" )

From (1), all variables of rank < k — 1 are stable in state ¢’ . Thus, all computations starting in
state ¢’ will produce the same sequence of values (as a function of the number of updates) for each vari-
able of rank k. As each round contains at least one update per variable, every variable of rank k will be
stable after #steps(C’,¢', k) rounds of any computation. In particular, for the computation C | 1 (that
is, C with (C 11) removed),

Vv (rank(v)<k =  wvisstablein ((Cli)1 #steps(C’,q',k))ogq" )

Let j = ststeps(C',q',k). Now ((Cli)Tj)oq = ((CLli)T7)o((CTi)og) = (CTi)((CLi)1T
§)og=(C1(i+4))oq and so,

Vv (rank(v)<k =  wvisstablein (C1(i+j))ogq )
and the inductive hypothesis is established for rank k. D

The examples in Section 2 illustrate Theorem 1. For instance, the iteration system of Example 3 is
acyclic; thus, each of its computations is convergent by Theorem 1(a). The iteration system of Example
2 is self-looping, and any computation where the first step updates z[1], the second updates z[2], and so

on is convergent; thus, each computation of the system is convergent by Theorem 1(b).

As mentioned in the introduction, verifying the convergence of an iteration system is generally accom-
plished by exhibiting a variant function whose value is bounded from below and is decreased by each step
that causes a state change. Such a proof requires 2™ — 1 cases to be considered, where n is the number of

variables in the system. In contrast, Theorem 1 shows that verifying the convergence of acyclic systems

6



requires no such case analysis.

The theorem also states that the convergence of all computations of a self-looping iteration system
can be established from the convergence of a computation of choice. One possibility is to choose this
computation to be the one in which each variable is updated at every step. The convergence of this
computation can then be proved by the variant function method which, in this instance, needs only one
case to be considered. Another possibility is to choose computations in which exactly one variable is

updated at each step; in this instance, the variant function method requires n cases.

Theorem 1 cannot be made to apply to all iteration systems. Consider, for example, the iteration system
defined by the two assignment statements

2=y

yvi=2.
Although this system has many computations that are convergent (for example, all computations where
exactly one variable is updated at the first step), it also has a computation that is not convergent (for
example, the computation where both z and y are updated at each step). Thus, unlike Theorem 1,
one cannot establish that this system is convergent by exhibiting one convergent computation. Similar

examples have been presented in [Dij] and [Rob].

In fact, it is straightforward to show that Theorem 1 cannot be made to apply to any class of iteration
systems that properly includes acyclic and self-looping systems. The proof for this follows from a con-
struction that exhibits, for each directed graph G that has a cycle of two or more nodes, an iteration
system I such that the dependency graph of I is G, and I has both convergent and non-convergent

computations.

The following lemma states that for any cyclic iteration system I there is a self-looping system which
captures a subset of the computations of I and, thereby, is a possible implementation for I. This shows

that the class of self-looping systems is rich.

Lemma 1:
For each iteration system I that is neither acyclic nor self-looping, there exists a self-looping iteration
system I’ that satisfies the following two conditions:

o There is a one-to-one correspondence between the states of I and those of I'.

o Every computation of I' is a computation of I.

Proof: Replace each maximally strongly connected component that has two or more nodes in I by a
single node with a self-loop in the dependency graph of I'. This is accomplished by replacing all the



variables in the component with one variable of type record; the components of this record correspond,

in a one-to-one manner, to the replaced variables. O

System I' in Lemma 1 is self-looping; hence, its convergence can be established by Theorem 1(b). (The
convergence of I', however, does not necessarily imply the convergence of the original system I.) Consider,
for instance, the iteration system in Example 1. This system is neither acyclic nor self-looping because
its dependency graph has a maximally strongly connected component consisting of variables z and y. By
replacing these two variables by one variable with two components, also called z and y for convenience,
we obtain the following implementation of the system:
(z,9):=(fz>ythenz-—yelsez,ifc<ytheny—zelsey)
z:=if z = y then 0 else z + 1.

As this system is self-looping, its convergence can be established by Theorem 1(b).

4 Convergence of Cyclic Iteration Systems

In this section, we generalize our analysis for the convergence of acyclic and self-looping systems to the
convergence of general iteration systems. Our starting point is to note the basic characteristic of an itera-
tion system that is neither acyclic nor self-looping, namely the existence of at least one maximally strongly
connected component in its dependency graph that consists of two or more nodes. For convenience, we

call a maximally strongly connected component that has two or more nodes a district.

Let D be a district in the dependency graph of an iteration system, I. The iteration system associated

with D is the iteration system (Vp, Fp) that satisfies the following two conditions:

o The set of variables, Vp, is the set of all variables in D together with each variable that is not in D

but some variable in D depends on it.

e The set of upda;te functions, Fp, is defined as follows. The update function for a variable in D is
the same as its update function in I, whereas the update function for a variable in Vp \ D is the

identity function for that variable.

For instance, the iteration system in Example 1 has one district whose associated iteration system can
be defined by the two assignment statements
z:=ifz>ythenz—yelsez

y:=ifz <ytheny—zelsey.



An iteration system is called district-convergent iff the iteration system associated with each district in
the dependency graph of the system is convergent. Since acyclic and self-looping systems do not have

any districts in their dependency graphs, they are trivially district-convergent.

An iteration system is called O-cyclic iff its dependency graph has no maximally strongly connected
component that consists of a single node with a self-loop; otherwise, the iteration system is called 1-
cyclic. Note that each iteration system is either 0-cyclic or 1-cyclic; in particular, acyclic systems are

0O-cyclic whereas self-looping ones are 1-cyclic.
The following theorem generalizes Theorem 1.

Theorem 2
If a district-convergent iteration system is
(a) O-cyclic, it is convergent, and if it is

(b) 1-cyclic and has one convergent computation, then it is convergent.

Proof:

We extend the definition of rank in the proof of Theorem 1 to an arbitrary iteration system, I, as follows.
Consider the “condensation” of its dependency graph (i.e., collapse each district into a single node; see
[Har]). It is straightforward to see that each cycle in the condensation is a self-loop. Assign ranks to the
nodes in the condensation using the previous definition of rank. Now, the rank of a variable v in I is

defined to be the rank of its corresponding node in the condensation.

The proof proceeds by induction on the rank k of variables, and is similar to the proof of Theorem 1.
The induction hypothesis is:
for an arbitrary computation C and an arbitrary state g in which every variable of rank lower than
k is stable, there exists a finite prefix § of C such that all variables of rank k will be stable in S o q.

For both the base case and the induction step, the following arguments suffice:

o if variable v does not depend on any variable or depends only on variables of lower rank (which are

stable in g), then v is clearly stable after the first round.

e if v depends on itself but on no other variable of the same rank, then the counting argument in the

proof of Theorem 1(b) ensures that v will eventually be stable.

o finally, it may be the case that v is in some district D. We argue that, once all the variables of
lower rank on which v depends on are stable, the convergence of the iteration system associated

with D guarantees that v will eventually be stable.

9
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In the remainder of this section we identify two proof obligations which are sufficient to establish the con-
vergence of an iteration system that is associated with a district. These obligations consists of exhibiting
either a variant function for each node in a selected set of nodes in the district (Lemma 2), or a single .

variant function for the whole district (Lemma 3).

The intuition underlying Lemma 2 is to “break” each cycle in the district by ensuring that some dis-
tinguished variable on the cycle will eventually reach a stable value. This is achieved by exhibiting a
variant function for the distinguished variable whose value decreases each time the value of the variable is
changed by an update. Once every distinguished variable in the district becomes stable (i.e. has a fixed
value), the iteration system associated with the district starts to behave like an acyclic system and, so,

eventually reaches a fixed point.

A more general approach to solving the same problem is to exhibit a variant function for all the variables
in the district. The value of this function is decreased by each step that causes a state change. See

Lemma 3 below.

In what follows, let
D be a district in some iteration system I,
(Vp, Fp) be the iteration system associated with D,
Qp be the set of states of (Vp, Fp), and
fu be the update function of a variable v in (Vp, Fp), and
Vp: be the set of variables in D’, a subgraph of D, and

N be an arbitrary set that is well-founded under some relation <.

Lemma 2: (Local Variant)
If each directed cycle in D has a variable v and a variant function # : Q, — N such that for each state
¢ in Qp,

#(£(9) <#(2) VvV (@) =)

then the iteration system (Vp, Fp) is convergent.

Lemma 3: (Global Variant)
If there is a variant function # : Qp — N such that for each state ¢ in Qp, and for each strongly

connected component D' in D,

#(Vprog) <#(q) vV (Vprog=g)
then the iteration system (Vp, Fp) is convergent.

- 10



Proofs of Lemmas:

To prove these lemmas, we augment the set of concepts introduced in the previous proofs by the following:

For a variable v in V and subset W C V, define allpaths(v, W) to be the subgraph in the dependency
graph of I containing (exactly) those paths that begin at v, do not contain any variable in W as an

intermediate node and end at some variable in W.

A variable v is unaffected by variable w in state g iff for an arbitrary state ¢’ that differs from g only in
its value of w, and an arbitrary finite sequence of steps S,

(Sog) = (Sog')
Intuitively, this implies that the value assigned to v in the application of any sequence to the state g is

independent of the value of w.

Proof of Lemma 2:
The proof obligation is to show that for an arbitrary computation, C, of (Vp, Fp) and an arbitrary state,
g € Qp, there exists a positive integer 7 such that (C 7%) o ¢ is a fixed point of (Vp, Fp).

By the antecedent of the lemma, we can distinguish on each cycle in D some variable that satisfies the
property stated in the lemma. Let W be the set of variables thus distinguished, and let U abbreviate the
set Vp \ D.

We show that for an arbitrary variable v in D there exists a positive integer j such that v is stable in
(C137) og. The maximum j for the variables in D is then the appropriate positive integer ¢ for which
(C11)oq is a fixed point. There are 3 cases to be considered.

o v € U: vis already stable in ¢ as it is updated by the identity function; that is, j = 0.

e v € W: by the property stated in the lemma and the fact that N is well-founded under <, we are
guaranteed that v will be stable after a finite number of steps in any computation. Let k be the
least positive integer such that all variables in W are stable in ¢’ = ((CTk) o g).

o v € (Vp \ W): let z denote any variable not in allpaths(v, W U U). We claim that v is unaffected
by z in ¢'. To prove this, we first note that the construction of allpaths(v, W U U) ensures that
every path from v to z must pass through some variable in W U U. Since all variables in W U U

are stable in ¢', it follows that v is unaffected by z in ¢'.

Next, we show that allpaths(v, W UU) is acyclic. The only variables in allpaths(v, W UU) that are

not in D are in U, but these have, by construction, no successors in allpaths(v, WU U) . It follows

- 11



that all cycles in allpaths(v, WUU) must be contained in D and stherefore, must pass through some
distinguished node in W. However, this is impossible in allpaths(v, W U U) as no distinguished
node has a successor. Thus, allpaths(v, W U U) is acyclic.

Hence, the value of v is affected only by the variables in alipaths(v, W U U), and since the lat-
ter is an acyclic graph with variables of rank 0 (that is, WU U ) stable in state ¢, we conclude from
Theorem 1(a) that on the application of I = rank(v) rounds to ¢', v will be stable; that is, v is
stable in (C'1j)ogq where j = k + 1.

Proof of Lemma 3:
To prove that the iteration system (Vp, Fp) is convergent, we show that for an arbitrary step W C Vp
and an arbitrary state ¢ € Qp,
#(Wog)<#(qg) VvV (Wog=y).
Since N is well-founded under <, there is no infinitely descending chain of values returned by # and,

hence, after a finite number of steps the iteration system is guaranteed to be at a fixed point.

The proof is organized as follows: first, we show that W o g is the same as the state that results from the
application of a finite sequence of mutually disjoint steps to g, each step of which updates the variables
in some strongly connected component of the dependency graph of (Vp, Fp). Then, we argue that by
the property stated in the lemma, it must be the case that #(Wog) < #(g) V (Wogq= q).

Consider the “subgraph induced by” W, Gw, in the dependency graph of (Vp, Fp) (i.e., its maximal
subgraph with node set W; see [Har]). Take the condensation of Gyw. As observed in the proof of
Theorem 2, the rank of the variables in W can be consistently computed via the condensation of Gw.

Let k be the maximum renk thus assigned.

Next, we make the observation that if two variables corresponding to different nodes in the condensation

are updated simultaneously, then

o if they are of different rank, the resulting state is the same as the one obtained by updating the
higher rank variable first, and then updating the other variable, and

o if they are of the same rank, the resulting state is the same as the one obtained by updating them

in any sequential order.

To complete the proof, consider all the variables in W of rank = i,(1 < i A4 < k). These variables can

be uniquely partitioned into sets, each of which corresponds to some node in the condensation of Gw.

© 12



Let W; be an arbitrary sequence of the sets in this partition such that each set appears exactly once.
By the observation made in the previous paragraph (Wi; Wi_1;...;W;) 0 ¢ = W o0 g. However, by the
property stated in the lemma, we know that the application of a step containing exactly the variables in
some strongly connected component can only lower the value returned by the variant function if there is
a change of state. Hence, if (W o ¢ # ¢) then #(W o ¢q) < #(q). O

As an example, both Lemma 2 and Lemma 3 can be used to show that the iteration system associated
with the district in Example 1 is convergent. In using Lemma 2, let the variant functions for both z and
y be their respective identity functions. In using Lemma 3, let the global variant function be the sum of
z and y. In either case, the convergence of the entire system in Example 1 can now be established by
Theorem 2.

5 Convergence of Nondeterministic Systems

So far, the definition of an iteration system associates exactly one (deterministic) update function with
each variable. We now extend this definition to allow each variable to be updated by more than one
update function. More specifically, we associate with each variable v a finite, non-empty set of update
functions F,. At each step in which v is updated, one of the functions in F, is chosen to update v. This
choice is arbitrary except for the requirement that each update function in F, is chosen infinitely often in
every computation. (Note that this is possible because each variable is updated infinitely often in every

computation.)

In the next example, we represent a nondeterministic iteration system by a set of assignment statements
(with choice), one for each variable. If F, = {f,g,...,h} then the assignment statement that updates v

has the form:
vi= flgl...|h

Example 4. (Nondetzerministic Shortest Path)
We exhibit a nondeterministic iteration system for the directed graph in Example 3. The nondeterminism
makes it possible to reduce the ‘atomicity’ of the update functions. In fact, every update function refers
uniquely to one edge in the graph, as follows:

v[0] := (0,0)

v[1] := (a,0)

v[2] := (b,0)

v[3) := if first[l)+ c < first[3]V second[3] = 1 then (first[l] + c,1) else v[3]

- 13



| if first[2]+d < first[3] v second[3] = 2 then (first[2] + d,1) else v[3]

This system is convergent to some fixed point, and when it is at a fixed point, each first[i] is the length
of the shortest path from node i to node 0, and each second]i] is the nearest neighbor to node i along
this path. O

We now redefine four concepts that were introduced earlier in order to accommodate the extension to

nondeterminism.

o A state g of an iteration system is a fized point iff for each variable v and each update function f,

in F,, fu(g) = Qo

A computation is said to be convergent iff for each state g and for each choice of update functions

in the computation there exists a finite prefix S of the computation such that S o g is a fixed point.

o The depends on relation is redefined as follows: variable v depends on variable w iff there exist two
states ¢ and ¢' such that ¢ and ¢’ differ only in their value of w and f,(g) # fu(g') for some f, in
! 3

o We augment the notion of the iteration system (Vp, Fp) associated with a district D in the de-
pendency graph of an iteration system J. With each variable v in Vp that is also in D, we now
associate its set of update functions in I, i.e. F,. The set of update functions for every variable in

Vp but not in D is defined to be the set that contains only the identity function for that variable.

Next, we extend the previous results to nondeterministic iteration systems.

Theorem 3:
If a nondeterministic iteration system is
(a) acyclic and has a fixed point, then it is convergent, and if it is

(b) self-looping and has one convergent computation, then it is convergent.

Proof Sketch: The assumption that a fixed point exists can be used to show that the induction argument
for the deterministic case continues to hold. In particular, the assumption is needed to assert that once all
the variables of rank lower than that of variable v are stable then all the update functions of f, compute

the same value.
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Theorem 4:
If a district-convergent nondeterministic iteration system is
(a) O-cyclic and has a fixed point, it is convergent, and if it is

(b) 1-cyclic and has one convergent computation, then it is convergent.

Proof Sketch: To prove the convergence of an arbitrary computation with an arbitrary choice of func-
tions at each step (that respects the selection restriction outlined above), we consider the convergent
computation with the same choice of functions. Now a counting argument that is very similar to the one

in the proof of Theorem 1(b) can be used to exhibit the required convergence. O

Lemma 4: (Local Variant)
If each directed cycle in D has a variable v and a variant function # : @, — N such that for each state
¢ in Qp, and each update function f, in F,

#(fu(q)) < #(Qv) v (.fu(Q) = Qu)

then the iteration system (Vp, Fp)is convergent provided it has a fixed point. ]

Lemma 5: (Global Variant)

If there is a variant function # : Qp — N such that for all states ¢ in Qp, for all strongly connected

components D' in D, and for every choice of update functions for the variables in Vpy,
#(Vpiog)<#(a) vV (Vpog=g)

then the iteration system (Vp, Fp) is convergent. O

6 Conclusions

We have defined a very general model of computation that exhibits true concurrency, and have considered
convergence as a typical property of systems expressed in this model. We established several results that

reduce the proof burden involved in establishing convergence.

When analyzing concurrent systems, convergence can be used to model termination. Since many progress
(that is, eventuality) properties of a concurrent system can be reduced to the termination of a derived

system (see, for example, [GFMRY]), our techniques can be used to verify general progress properties.

There are several issues that need to be investigated in extending this work. Other than identifying more
general sufficiency conditions and determining their scope, a comparison of the ‘rate’ of convergence of
various types of computations is needed. Methods regarding other properties, such as safety, also need

to be studied.
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1. Introduction

The concepts of Self Stabilization and Self Stabilizing Systems were introduced by Dijkstra in [Di74]. In this pioneer-
ing work Dijkstra has defined the new class of self stabilizing protocols for distributed systems. These protocols cap-
ture the notion of recovering from transient bugs, bugs which change the state of some components of the system but
keep them in a working order. In the event of such a bug occurs the system may loose its consistency and enter a
somewhat arbitrary configuration while all its components are still correct. A self stabilizing system is a system

which regains its consistency by itself, without any kind of an outside intervention.

In [Di74] Dijkstra presented three self-stabilizing protocols for the mutual exclusion problem. Dijkstra’s proto-
cols work for a system whose communication graph is a directed ring. A ring in which all edges are directed in the
same direction. Communication is allowed in both directions. Following Dijkstra several more works were done in
this area. Self stabilizing protocols for a direcle::l ring (or chain) were presented in [BGW87], [BP87], and [Bu87].
In [Kr79] a self stabilizing protocol for a tree structured systems was presented. This protocol allows more then one
processor to be in the critical section. A self stabilizing mutual exclusion protocol for systems with arbitrary com-
munication graphs is presented in [Tc81]. This protocol requires an extensive programming work for every indivi-
dual system since it is recursively composed of protocols defined over covering subgraphs of the original communi-

cation graph.

In most of the work done in this field distributed systems are modeled by a set of finite automata. Each such
automaton resides on a node of the system’s Communication Graph. Automata which reside on neighboring nodes
are called neighbors. Each automaton can observe the state of its neighbors. Its transition function depends on the

state of the automaton, the states of its neighbors, and the orientation of the edges connecting them.

Part of the c.ontributions of this paper is in redefining of self stabilizing systems. In the new definition the self
stabilization property of a protocol is separated from its task. All self stabilizing protocols known to us are variants
of mutual exclusion protocols. This trend is so strong that actually many times mutual exclusion is presented as an
inherent requirement for self stabilization. Unlike previous works the task of one of our self stabilizing protocols is

to find the spanning tree of the communication graph.

The second aspect addressed in this work is the atomicity level of the protocol. An atomic step of a processor
is the "smallest” step that the processor executes uninterrupted. Dijkstra’s work as well as some other works in this

field assume the existence of a specific scheduler, called Central Demon. An atomic step in this model is initiated by



the demon pointing to some processor. Only the chosen processor is allowed to change state i.e. read the states of all
its neighbors, decide whether to change its state, and then move to its new state. Such atomicity may pose difficult
hardware problems and cause delays in executions. Some other protocols were design to avoid those implementation
difficulties. Brown ,Gouda and Wu [BGW87], and Burns [Bu87), designed protocols that have the following non-
interfering property: once a processor can move from one state to another, it will make that move regardless of other
processors further steps. They proved that a self-stabilizing non-interfering protocol is guaranteed to stabilize even if
some processors change state at the same time. In their model an atomic step is initiated by the scheduler pointing to
one or more processors. The chosen processors are allowed to change state at the same time, i.e. read the states of all
their neighbors, decide whether to change there state, and then move to there new state. However in distributed sys-
tems more general schedules are possible: For example a system with two processors P, and P, starting with P,
reading then P, reading and writing, and at last P, writing.

Our protocols assume the most basic atomicity level. We assume that a processor has no direct access to the
state of its neighbors. Specifically, we assume that the only way to pass information from one processor to another is
via the use of shared registers. In all previous works the read and write actions were integrated into one state transi-
tion. In our protocols the only atomicity assumed is the atomicity of read and write operations to these shared regis-
ters. Moreover we step ahead and integrate the value read by a processor as part of its state, and require the system to

stabilize in spite of inconsistency between the processor’s state and the actual value read by it.

This latter, refined atomicity raises some problems. A processor may change its state according to values
which are outdated, since its neighbors changed their states after it read. Consequently, it may commit "illegal” state
transitions. Even if the transition made by the processor is "legal”, no other processor can be informed on the new
state before the processor writes it in its communication registers. Clearly, protocols which are correct without
assuming a central demon, especially protocols that are correct with respect to read and write atomicity, keep their
correctness in its presence. On the other hand, a protocol which is proven correct assuming this presence might not
be correct in a system which guarantees only read and write atomicity. Even the non-interfering property does not
ensure the correctness of protocols with read and write atomicity, as we will show in the sequel. Thus in this respect

the protocols presented here are equal to or supersede all previous works.

The use of shared registers enables us to considerably extend the applicability of self stabilizing protocols,

which is the third aspect we address here. Dijkstra’s protocols and all other self stabilizing mutual-exclusion ring



protocols work only on a directed ring. It is important to notice that in all previous models it is impossible to have
self stabilizing mutual exclusion protocols on undirected rings, or on rings whose edges are directed but not neces-
sarily in a consistent way. In these previous models there is no way of breaking symmetry, even by using central

demon. This is demonstrated by the following simple example.

Consider a four processor ring system as described in Figure 1.1 where P, and P, are identical processors.
Assume that P, and P "thinks" that P, is their left neighbor and P4 is their right neighbor. Starting with P and P3
in the same state it is easy to see that there exist a fair schedule in which every step taken by P is followed by the
same step taken by P, Hence P, and P either enter the critical section together infinitely often, or are starved, so
no self stabilizing protocol for mutual exclusion for this system exist. Similarly, in case of a directed tree system, as

described in Figure 1.2, with out sense of direction, as in Kruijer’s model, no self stabilizing mutual exclusion proto-

col exist.
Pl Pl
Py P P, Ps
Fig1.2
Py
Fig 1.1

Due to the refined atomicity level of our system we achieve, for the first time, symmetry braking. We allow
the processors to write different value to different neighbors and thus to break symmetry, when needed. The sense of
direction becomes unnecessary and the design of self stabilizing mutual exclusion (and other asymmetric tasks) pro-
tocols, for any given graph, is possible. Moreover it is possible to design self stabilizing protocol in which the pro-

gram of each processor depends only on the number of links connected to it (and their direction if the underlying



graph is directed). Using this property, dynamic protocols in which the processor’s program accommodate the
changes in their local topology (the number and direction of their links) can be designed. Such protocol can be
applied to dynamic systems, which are systems whose topology may change during execution. Using the self stabili-
zation property of the protocol and the ability to accommodate to the local topology, no initialization is needed fol-

lowing any such change.

In this paper we present three self stabilizing dynamic protocols. The task of the first protocol is to construct a
rooted spanning tree of the system’s communication graph. This protocol does not assume any special communica-
tion graph. The second protocol achieves mutual exclusion on a tree structured system. Both these protocols assume
the most basic atomicity level, that is read and write atomicity. We conclude this work by combining the two
aforementioned protocols into a single self stabilizing dynamic protocol for mutual exclusion in general graphs. This
last protocol enjoys the same atomicity and dynamic properties as its two sub protocols. Combining the two proto-

cols is enabled by the flexibility achieved by using dynamic protocols.

The rest of this paper is organized as follows: in Section 2 the formal model and formal requirement for self
stabilization are presented. In Sections 3,4 A self stabilizing spanning tree protocol and a mutual exclusion on a
dynamic tree protocols are presented. In Section § the two protocols are combined to obtain the final protocol. Con-

cluding remarks are brought in Section 6.
2. Dynamic Self-Stabilizing Systems

2.1. Static Systems and Protocols - A distributed system SYS consists of n processors, denoted by P,,P5, - -+ ,P,.
processor resides on a node of the system’s Communication Graph. The communication graph may be directed,
meaning that for each link the two processors that are attached to it agree on its direction: one is attached to the link
tail and the other to its head. Two processors which reside on two neighboring nodes of the communication graph are
called neighbors. Neighbors communicate between themselves by the use of shared registers. Every shared register
is atomic (serializable) with respect to read and write operations, that is all read and write actions to the same regis-
ter can be serialized in time. processor P; is a RAM (as defined in first section of [AHU74]). The processors are
anonymous, i.e. they do not have identities. The program of each processor is composed of atomic steps. An atomic
step of a processor consists of an internal computation followed by a read or a write action. processor has an inter-

nal register called program counter (pc). The pc of each processor always points to the next atomic step to be exe-



cuted by that processor.

A protocol for a system SYS is a collection of programs of all processors in SYS. When no ambiguity occurs, it
is convenient to identify processors with their programs. Hence from now on we refer by P; to the i-th processor '
together with its program. One can look at such a processor as a state-machine. A state, s;, of a processor, P;,is
defined by the contents of its memory, including the pc . Denote by §; the set of states of P;. Given a protocol Pr for
a system SYS , we associate with each shared register r the set of symbols Z, that can be stored in r (the set Z, isnot
necessarily finite). A configuration of SYS is a vector of states of all processors and the content of all registers.
Denote by C=(5;XS3X * + + Sy XE X - -+ XE,) (where m is the number of shared registers in the system), the set of

all possible configurations of SYS with the protocol Pr.

Without loss of generality we assume that at any given time exactly one atomic step is executed in the entire
system. Let ¢ and c be two configurations of SYS, where ¢ is reached from ¢, by a single atomic step of a single
processor. We denote this fact by ¢,—c3. An execution of Pr is an infinite sequence of configurations (¢ ,¢2,..) such
that ¢; —c¢; . fori=12, - - - . A schedule is a sequence of processor numbers. For any execution E of SYS, we define
the schedule of E as the sequence of processor numbers, which correspond to the order of the atomic steps taken by
the processors during E. Note that an execution is uniquely determined by its initial configuration and by its
schedule. For example if E is started by an action of P; then the index j is first in its corresponding schedule. An

(infinite) schedule S is fair if every processor number appears in § an infinitely often.

2.3. Self Stabilization - In this section we define the self stabilization property for distributed protocols. The

definition suggested here includes the one in [Di74], but appears to be more general.

Let T be the task of the protocol i.e. Mutual Exclusion, Constructing spanning tree ect. A specification of a
task T is given by a set L(T) of legitimate sequences of configurations (The i 'th legitimate sequence of configura-

tions is called in short Isc; ). In the sequel we define L (Spanning Tree ) and L (Mutual Exclusion ).

Definition: A protocol Pr for SYS is self stabilizing for a task T if, starting from any configuration c;€C every

infinite fair execution of Pr has a suffix that belong to L (T').

NOTE: Self Stabilization appears sometimes with no requirement from the scheduler to be fair, [Di74]. The only
requirement from the schedule is that it always select an "privileged” processor. "Privileged” processor in the model

of [Di74] is a processor that a certain boolean function of its state and the states of its neighbors is true. Whenever



the schedule select such a privilege processor, the processor makes a "move" i.e. changes its state,

In mutual-exclusion protocols it is obvious that whenever the system starts a Isc; then the schedule becomes
fair. However in the stabilizing period of the execution the schedule may not be fair. In our model "privileged” pro-
cessor is a processor that when it is activated successively sufficiently many times it changes a communication regis-
ter value. It can be shown that even if the schedule selects only the privileged processor all the protocols presented
here are self stabilizing. When a not privileged processor is selected there is no influence on the communication

registers value and hence this selection can be eliminated from the schedule.

2.3. Dynamic Systems - Once we deal with self stabilizing systems it is very natural to allow the system to change
dynamically. The changes we allow are any kind of addition or deletion of an edge or a node of the communication
graph G. Changes to a self stabilizing system should be regarded as just another kind of transient bugs. In other
words, the self stabilization property of the system should be strong enough to allow the system to stabilize itself
some time after the last topology change is done. In this context we want a topology change to be a very local matter.
We would not wish, for instance, that due to a topology change in one part of the system many processors in other
parts of the system will change their programs. Also we would not wish the program of a processor to depend on its
location in the network. Therefore, it is very natural to require that the program of a processor depends only on the

number and orientation of its attached links.

Dijkstra [Di74] has noticed that when all the processors are identical, there are situations in which no self sta-
bilizing protocol for mutual exclusion exist, since there is no way to break symmetry of symmetric configurations.
In our model even the existence of the schedule does not help: Assume a communication graph in which each pro-
cessor has the same number of incoming and outgoing links, hence the same program, starting with all the processors
in the same state we can schedule them for read actions and then write actions so they will read and write the same
forever. To accommodate this requirement we adopt his approach, and assume that the system contains, exactly one
of its processors as a Special Processor. Our protocols should be correct for any possible choice of special proces-

sor. Those considerations are summed up in the following Uniformity condition
(3) [Uniformity]
(3a) Exactly one processor in SYS is a special processor.

(3b) The program of each processor, depends only on its being or not being a special processor, the number of



its neighbors and the orientation of its adjunct edges (if exist).

(In dynamic protocols, the numbers of neighbors may be changed and is considered as a parameter of the pro-

gram of each processor).

3. A Spanning Tree Protocol

In all the protocols presented in this paper every pair of neighbors, P; and P; communicate by using two shared
registers, r;; and rj;. Processor P (P;) writes into r;; (r;i) and reads from rj (r;;). As mentioned before all these
registers are serializable with respect to read and write operations. A processor owns all the shared registers it can
write to. Each processor orders the links attached to it in an arbitrary way. We denote by o; the order defined by P;
on its adjacent links, and by a the collections of all these ordering, o.= (0, * * * ,&, ). Note that o; induces in a

natural way an ordering of the neighbors of P;. +

Our spanning tree protocol is a distributed BFS protocol. The output spanning tree is a BFS tree of the com-
munication graph of SYS. This spanning tree is rooted at the special processor of the system. For obvious reasons

this special processor is called the root processor.

A graph may have more then a single BFS tree rooted at the same node. Let G (V,E) be a graph with orderings
a= (0,0, * * &) Of the neighbors of each node v;eV and a root v € V. Define the First BFS Tree of G to be a
BFS tree, rooted at vy. In case a node, v; of distance d+1 from v, has more than one neighbor of distance d from vy,
v; is connected to the first neighbor according to o; among all its neighbors whose distance from v, is 4. The proto-
col always produces the First BFS Tree of the system’s communication graph, rooted at the root processor and with

respect to the (arbitrary) orderings o of the neighbors of every processor.

Each commiunication register 7;; is composed of two fields. The first field, denoted by r;; .father , is a binary
field. The second field denoted by r;; .distance is a positive integer field. Once the output tree is constructed it is
encoded by means of the communication registers as follows: If the value of r;;.father is 1 then (the node of) P; is
the "father” of (the node of) P; in the tree. At the same time r;; .distance holds the distance between P; and the root

Processor.

Each processor P; keeps an internal variable for each neighbor. The internal variable, corresponding to the
neighbor P; is denoted by irj;. This variable stores the last value of r; that was read by P;. The two fields of ir; are

denoted by irj;.father and irj distance respectively. The code of the protocol, for the root and for the other



processors, appears in Figure 3.1. In writing the code for processor P; we assume that it has k neighbors, denoted by

P,,P,, - ,P; and ordered according to o;.

Root: do forever
for m:=1 to k do write r;, :=<0,0>;
od
Other: do forever
*) for m:=1 o k do ir,;:=read (r,;);
first:=TRUE;
(**) dist:= min (ir,,; .dist+1;
form:=1t0k
do
if first and r,,; .distance =dist-1
then
write r;, :=<1,dist>;
first:=FALSE ;
else
write r., :=<0,dist>;
od
od

Figure 3.1: The Spanning Tree Protocol for P;.

In order w prove that the protocol is self stabilizing we first have to define the set L (Spanning Tree) of Isc.
We choose to include in this set every sequence of configurations that, each configuration of it, encodes the First
BFS Tree as defined above.
We now present a lemma which essentially shows that the protocol presented above is self stabilizing relative to
L (Spanning Tree).
Lemma 3.1: Let P; be an arbitrary processor whose distance from the root is I and let P; be an arbitrary neighbor of
P;. Let ¢ be an arbitrary configuration and let S be an arbitrary fair schedule. For every index ¢ denote by ¢, the
configuration reac'hed by the system after it is activated ¢ times starting from configuration ¢ and using the schedule

S. For every distance d 20 there exist ¢4 such that: For every 21, c, satisfies the following assertions:
(@ Ifl<d then r;.distance =1.

(b) Ifl<d thenr;;.father has the "right" value. That is; if P; is the first neighbor of P; (using o;) of distance /-1

from the root then rij.father =1, and otherwise rij-father =0.

(c) Ifl<dthenir;=r;.



(d If!>d thenr;.distance >d.

(e) If! >d thenirj.distance2d.

Proof: We prove the Lemma by induction over d. In the proof we use repeatedly the fact that due to the fairess of
S every processor is activated in S infinitely often.

Base Case (d=0):

Assertion (a): The only node of distance 0 from the root is the root itself. Assume that the root has k neighbors. After
k activations of the root its registers hold the value <0,0>. The values stored in the registers of the root will not be
changed any more.

Assertion (b): It is easy to see that all r;;.father of the root processor holds the value 0 after the first k activation.
Assertion (c): This assertion holds vacuously for the base case, since there are no processors of distance -1 from the
root.

Assertion (d): Note that all values stored in the distance ficlds of all registers are non-negative. Therefore the value
of the variable dist computed in line (**) of the protocol of all non-root processors is always >0. In particular when-
ever a value is written in any register by a non-root processor its distance field 2 1. Again, By the Fairness of § each
processor eventually writes in all its registers. Once this happens the distance fields of all registers of all non-root
processors remain positive forever, hence assertion (d) is also satisfied.

Assertion (e): Trivial, the value within any ir;; .distance of any processor 20.

Induction Step:

Let C, be a configuration for which assertions (a)-(e) are satisfied for some integer d > 0. We show the existence of
subsequent configuration C. (1>¢) for which assertion (a)-(e) hold for d+1.

Assertion (a-b): Observe the configuration C,. Assertions (a),(d) and (e) of the induction hypothesis guarantee that:
all the processors in distance d holds the value d in there communication registers, and all the processors in distance
2d+1 holds greater values. Let P; be a processor in distance d+1 from the root. Tracing the behavior of P; and its
neighbors starting in C, with arbitrary schedule we can conclude: After the first serial read actions of P;, line (*), P;
must find that the minimal value of its neighbor registers is d and therefore write the distance d+1 in all its
r;j.distance . By the induction hypothesis no changes occur in the registers of the processors that are in distance d
and the value of the rest neighbors of P; will always be > d. From the above two facts we can conclude that the line

(**) always get the same value i.e. d+1 and hence assertion (a) is satisfied. Moreover after P; first serial read
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actions P; finds its first neighbor that hold the distance d and make it its father. Hence assertion (b) holds too.
Assertion (c): At this step we have already show that all the processors in distance d+1 eventually write d+1 in all
there register and this value is fixed forever. In addition by the induction hypothesis all processors in distance d or
less has fixed value in there registers. By using the faimess of the schedule we can be sure that any processor Pjin
distance d reads the values of its neighbors so its internal variables are equal to the communication registers of its
neighbors.

Assertion (d-e): Let P; be an arbitrary processor of distance >d+1. The neighbors of P; are all of distance 2d+1
from the root. By assertion (d)-(e) of the induction hypothesis starting from C, and onwards any neighbor of P;, P;,
satisfies r;; .distance 2d+1. Therefore, whenever P; execute line (*) and line (**) after C, the value assigned to the
variable dist is >d+1. Once P; write to all its registers, assertion (d) is satisfied for P;. The same holds for all pro-
cessors of distance >d+1 from the root. Moreover whenever this is done the first serial read actions thereafter
makes irj; .distance 2d+1 of any processor P; of distance >d+1. O

Corollary 3.2: The protocol presented above is self stabilizing relative to the set L (Spanning Tree). (Figure 3.2)

4. Mutual-Exclusion Protocol for Dynamic Tree System

This protocol runs on systems whose communication graph is a directed tree, rooted at the (special) root processor.
Let P, be an arbitrary processor. The sons of Py are ordered from left to right by some arbitrary order ;. Each pro-
cessor has a portion of its code called the Critical Section. The aim of the protocol is to coordinate processor activity
such that at any given time at most one processor executes its critical section and each processor enter the critical
section infinitely often. The (single) processor executing the critical section is called the privileged processor. When

an privileged processor completes execution of its critical section it passes the privilege to one of its neighbors.

Once the sylstem start the suffix that belongs to L (Mutual Exclusion), execution of the protocol proceeds in
phases. In each phase each processor becomes privileged at least once. The first privileged processor in each phase is
the root. Following its first activation the root (recursively) passes the privilege to (the subtrees rooted at) its sons in
a left to right order. Whenever a processor P; becomes privileged it executes its own critical section and then passes
the privilege to its leftmost son. Once the privilege is passed to all processors in the subtree rooted at this son it is
returned to P;. Subsequently the privilege is passed to the second from left son of P; and so on. The phase ends when
the rightmost son of the root returns the privilege to the root itself. Hence execution of each phase corresponds to a

DFS tour of the whole tree.
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To enable repeating executions of phases, we think of the tree in the beginning of each phase as colored in
either white (0) or black (1). Each phase recolors the tree from its current color to the opposite color. Define a (1-
0)-phase ((0-1)-phase) as a phase in which the tree is recolored from 0 to 1 (from 1 to 0). Let e=(P;—P,) be a link
of the communication tree directed from a father Py to its son P, . The link is implemented using two communication
registers, the instruct register, ry, , is written to by P, and read from by P,. The confirm register, ry , is written to by
P, and read from by P, . Both registers have a color field whose possible values are 0 and 1. In the sequel we refer
to the value stored in the color field of a register r as the color of r. In case the color of 7, is equal to the color of
ry we say that e is balanced and that its color is the common color of its two registers, otherwise e is unbalanced.
The privilege is passed from P, to P, by unbalancing e. The privilege is returned from P, to P, by rebalancing e.
In addition to its color field each instruct register has a binary close field which is essential in assuring correctness

of the protocol in the presence of read/write atomicity.

Let P; be an arbitrary processor. For each neighbor P;, P; keeps in its local memory two internal variables,
ir; and or;. These internal variables function as images of the color of r; and r;; respectively. Whenever P; reads
rj; it assigns the read value into ir;;. Similarly, whenever P; writes into r;;, it assigns r;; the contents of or;;. Assume
that P; has / sons, Its state set §; is defined by the values of the variables or;,, - - - ,ory and iry;, - - - jr; correspond-
ing to its outgoing links. In case P; is not the root, its states are also defined by the value of the variables ir;; and or;;

corresponding to its incoming link. The states in §; satisfy the following specifications:

(1)  For some jo, 1 < jo <1, either the value of or;; is 0if j < joand 1if j > jo, or the value of ory; is 1 if j < jo
and 0 if j > jo. When jo <1, the registers r;;, and r;;,., are called the left border register and right border
register, respectively.

(2) If P; is not a root processor and if jq of (1) above is smaller than / then the value of orj is equal to that of

or;.
(3)  Any combination of values of iry;, - - - ,ir; and ir; is allowed.

The set C of system configurations is the cartesian product of the all the state sets S;. The values of the com-
munication registers are arbitrary (but legal, i.e. can be stored in the corresponding registers). Note that we allow
configurations in which the value of the register r; is not equal to the value of the corresponding internal variables
or;; and ir;;. In other words: It is not assumed that a processor has an apriori knowledge of the actual value written in

any register.



The code of the protocol, for the root and for the other processors, appears in Figure 4.1. The code is written
for P; with ! sons, denoted by Py ,P3,  **,P;. The father of P; is Pr. Any processor that executes line 15 or 24 isa
privileged processor. We define an active processor as processor that all its outgoing links are balanced and its

incoming link is unbalanced. (The root processor is active whenever all its outgoing links are balanced and any leaf
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processor (i.e. processor without any sons) is active whenever its incoming link is unbalanced).

In the code several predicates are used. These predicates are defined over the possible values of internal variables

only. Those predicates are:

18
19
20
21
22
23
24
25

Root: do forever

for m:=1 10! do write r;, := <or;, ,0>;

for m:=1t01 do ir,;:=read(r,;);

if (all_out_link_balanced) then instruct_next_son ;
od

Other: do forever
for m:=1to! do write r,, := <or;, ,0>;
write ryi=or;;
repeat (try to read the instruct register of your incoming link)
irg:=read(ry);
until irs .close =0; -
for m:=1to! doir,; :=read(r,;);
if (all_out_link_balanced) and (in_link_unbalanced)
then ({you are privileged)
if done then begin or:=ir;; write riz=or;; end; (balance incoming link}
else instruct_next_son;  {unbalance next outgoing link}
od

Procedure instruci_next_son: {make your next son active by unbalancing its incoming link)
if exists_border then j :=index_of right_of border_register
else j :=1;
write r;;.close = 1;
irj; ==read (r;;);
if (all_out_link_balanced) and (in_link_unbalanced)
then begin or;; :=not or;; write r;; := <or;;,0>; end
else write r;;.close :=0;

Figure 4.1: The Mutual-Exclusion protocol for Dynamic Tree Systems.
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(1)  all_out_links_balanced holds if or,, =iry form=1,- - 1. (this holds vacuously fora leaf, i.e. when [ = 0).
(2) exsts_border holds if there exists j, 15/ <l such that or;; #or;js..
(3) in_link_unbalanced holds if ory#iry .color. (this predicate is always true for the root processor).
(4) done is true when for m=1,""",l, orig=0r;; and ory#or;; (i.e., when all sons have already been
instructed).
(5) The function index_of _the_right_of_border_register retumns the index of the instruct register that is in right
of the border.
In order to prove that the protocol is self stabilizing we first have t0 define the set L (Mutual exclusion) of Isc.
Any Isc;e L (Mutual Exclusion) satisfies the following:
[Exclusion]: In each configuration ¢, € Isc; at mast one processor is in the critical section.
[Fairness]: During Isc; each processor is in the critical section infinity often.
An arbitrary fair execution E=cg,c,," - - , is an execution which starts from an arbitrary configuration, co€ C,
and using an arbitrary fair schedule, S. In the following lemmas we use E to denote arbitrary fair execution.

Lemma 4.1

If during E the colors of all registers in the system are constant then there exists a configuration ¢, in E such that for

every subsequent configuration ¢, (u2t) the value of the close field of all instruct registers in the system is 0.
Proof:

We prove the lemma by showing that for every processor in the system P; there is an index o (i) (o (i) depends on
E) such that in the configuration ¢, 4 of E , the value of the ciose field of all the instruct registers of P; is 0 and that
this value is not changed in any configuration in E passed c, ;. The proof proceeds by induction on d, the distance

of P; from the root.

Base Case d=0:

In this case P; is the root processor. The program for the root processor is a single loop. By the fairness of § it
holds that during E P; executes this loop infinitely often. In particular lines 2 and 3 of the root’s program are exe-

cuted infinitely often. In line 2 the root sets the value of the close field of all its instruct registers to 0. In addition in

line 2 the root sets the values of the color field of every instruct register r;, to the value of its internal variable or .
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In line 3 the root reads the confirm registers of all its sons; for every register r,; P; sets the value of the internal vari-
able ir,; to the value it read from r,,;. Let c, ;) be the first configuration in E after P; executed lines 2,3 for the first
time. In ¢, the values of all close fields in all instruct registers of the root are 0 and for every son P, of the root
iFmi=rmi @and ory,=r;y.color. By the assumption that no color field is changed during E, any further read action

does not change the value of ir,,; . By the same assumption the value of Oriw is not changed either.

The only place where the value of the close field of any register is set to 1 is inside the procedure
instruct_next_son. To complete the proof it suffices to show that following C,(;) the root never executes this pro-
cedure. Assume towards a contradiction that instruct_next_son is executed by the root starting from configuration
Ck, (k20 (i)). We reach a contradiction by showing that in this case the root also changes the color of some instruct
register. Following c, ) instruct_next_son is executed only if the predicate all_out_links_balanced holds. While
executing instruct_next_son the root computes the index j of the processor which will be "instructed”. After that the
root checks whether the link connecting it to P; is balanced. We have already proved that in every configuration that
follows ¢, ; it holds that irji=r;; and or;j=r;;.color, hence in ¢, and every subsequent configuration all the out links
of the root are indeed balanced. In particular the link between the root and P; is balanced. In this case the root

instructs P; by changing the color of rij, contradiction.
Induction Step:

We assume correctness of the lemma for all processors of distance d from the root. Let P; be an arbitrary processor
of distance d+1 from the root. We show the existence of a configuration ¢, after which the values of all close

fields in all instruct registers of P; are 0 forever,

The program of a non-root processor P; is composed of a main loop and an inner loop. In the inner loop P;
waits until it finds that the value of all close fields of its father P, is 0. Once this happens P; proceeds to execute the
main loop. P, is in distance d from the root. By the induction hypothesis there is a configuration in E, Co(r) SUch
that in every configuration of E following Co(ry it holds that the value of the close field of the register rs is 0. By the
faimess of §, P; is activated infinitely often during E. In particular P; is activated infinitely often passed Cory- Since
after ¢,y the value of the close field of 74 is always 0, P; does not get stuck in its inner loop passed c, () and exe-
cutes its main loop infinitely often. Let ¢, ) be the configuration reached by the system right after P; executes lines 7
to 12 for the first time after c,(;). By an argument similar to the one used in the proof of the base case it can be

shown that in ¢, ;) the value of all close fields of P; is 0 and that these registers will not be changed in E any more.
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Lemma 4.2

In every arbitrary fair execution the color of at least one register in the system is changed.

Proof:

In the proof we use the following Observation: in every arbitrary configuration there is at least one active processor.

When all the links in the system are balanced then the root processor is active otherwise consider an unbalanced link,

(P;—P;), with maximal distance from the root then P; is an active processor.

Assume towards a contradiction that E is a fair execution during which no processor changes the color of any

of its registers. By lemma 4.1 there exist a configuration ¢, (¢20) in E such that for every configuration ¢, (u2f)

every close field holds 0.

case 1: In ¢ all the links of the root are balanced

By the assumption no color field is changed. Hence in any configuration in E the outgoing links of the root
are balanced. The program for the root processor consist of a single loop. By the faimess of S this loop is exe-
cuted infinitely often during E . In particular lines 2 and 3 are executed infinitely often. Whenever these two
lines are executed the root reads the communication registers of all its sons. Once these registers are read the
root "discovers" that all its outgoing links are balanced, and unbalances the right_of _border link by changing

the color of its register, contradiction.

case 2: In ¢ there is at least one unbalanced link.

By the assumption no color field is changed. Hence any unbalanced (balanced) link in c o remains unbalanced
(balanced) during E. Consider an unbalanced link (P, —P;) of maximal distance from the root. By the defini-
tion of (P, —P;) the incoming of P; is unbalanced and all the outgoing links of P; are balanced in any confi-
guration of E. The program of the non-root processor P; is composed of a main loop and an inner loop. After
the system reaches ¢, the value of r4.close is zero and the main loop is executed infinitely often. Let ¢, (u2r)
be the first configuration after P; executed lines 7 to 12. It can be shown that in the subsequent execution after
¢, P; discovers that the predicates all_out links_balanced and in_link_unbalanced holds. Once P;
discovered that the value of those predicates is true it either changes the color of the right of border register (in

case the predicate done does not hold) or it balances the incoming link (in case the predicate done holds), con-
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tradiction. O

Corollary 4.3:

In every arbitrary fair execution the color of at least one register is changed infinitely often.
Proof :

The proof is immediate by a repeated application of lemma 4.2. O

Next we show that a non-root processor, P;, may make only a bounded number of changes in the color of its

communication registers, unless the color of its father that is related to P; s incoming link is changed too.

Lemma 4.4:
Let P; be a processor with k outgoing links, and an incoming link (Py—P;). Let m;; be the number of times P;

changes the color of r;;. Then for any arbitrary fair execution £ , Z; m;; <2xk+3, between two changes of rj.color.

Proof:

First we count all the possible changes in the color of the registers of P; due to lines 7 and 8 in the code. Notice that
during E, once these lines are executed the value of any or;; is equal to the value of r;; since an atomic step consist
internal computation and read or write action. Hence no further changes in the color of the registers occur by execu-
tion these lines. The number of these changes is at most k+1. Next consider lines 15 and 24. P; can execute these
lines at most once before it reads the value of rs into irg. If P; sees the link balanced (i.e. irg =ory) then P; does
not execute lines 15 or 24 before the value of iry is changed. Otherwise, P; may execute lines 15 or 24 only when it
finds that it is an active processor. In this case, P; repeatedly executes the procedure instruct_next_son, until all its
outgoing links are balanced and have the same value as rs.color. Before this happens, P; can execute line 15 at
most once and line 24 at most k times as follow: first write in 7 and then in all its instruct registers. Here we use
the fact that instruct_next_son repeatedly changes the values of the variables or;;, in a cyclic way. Once done gets
the value true, P; balances its incoming link by writing in ry. After this link is balanced by P;, P; does not change a
color of a register any more until the incoming link is unbalanced again by B L

Lemma 4.5:

Let P; be a processor with k outgoing links. Let (P;—P,) be an arbitrary outgoing link of P;. Let m;; be the
number of times P; changes the color of rij. Then for any arbitrary fair execution £, Z; m;; <2xk+3, between two

changes of r,,.
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Proof:

First we count all the possible changes due to lines 2 or 7,8, similarly to the above lemma P; can change its commun-
ication registers due to those line execution once i.e. k+1 times. Next consider lines 15 and 24. P; can execute those ‘
lines at most once before it reads the value of its son, P,, communication register. If P; see (P;—P,) link unbal-
anced (i.e. ir, #or;) then P; does not executes lines 15 or 24 any more. Otherwise, P; may execute line 15 or 24
only when it finds that it is an active processor. In this case, P; repeatedly executes the procedure instruct_next_son,
until it unbalances the link (P; »P,). Before this happens, P; can execute line 24 k times and execute line 15 once.
(first write in r;, and then in all its other registers. Here we use the fact that instruct_next_son repeatedly changes
the colors of P;'s registers in a cyclic way). Once P; unbalances the link to P, no farther changes are possible since

the predicate all_out_links_balanced is not true. O
Corollary 4.6:

In every arbitrary fair execution:

(1) The color of every register is changed infinitely often.

(2) There is a configuration c,,, such that for any subsequent configuration ¢,, t>¢,, the color of any register r;; is

equal to the color of or;;.

(3) Every processor changes its communication registers, executing each line 15 (except the root processor) and line

24 (except processors with no sons), infinitely many times.

(4) There is a configuration c,,, such that any processor has already executed the first line of its code. (line 1 or 6).
proof:

(1) By corollary 4:3, and lemmas 4.4, 4.5, in every fair execution, every register is changed infinitely often.

(2) By (1) above every register is assigned infinitely often. The color of any register r;; is equal to its correspond-
ings internal variable or;; after the first assignment since an atomic step is composed with internal computation and

read or write action.
(3) Following c,, every register is changed infinitely often. Hence every processor changes the color of each of its

registers, executing both line 15 (line 15 is not executed by the root processor) and line 24 (line 24 is not executed by

processors without sons) infinitely many times.
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(4) By the code of the processors, between any two executions of lines 15 or 24 the processor executes the first line
of its code. By (3) above during E every processor executes line 15 or 24 infinitely often hence €Very processor exe-

cutes the first line of its code infinitely often. O

A crucial property which every link in the system in our protocol has is a “proper link behavior”. Consider a
link (P, —P,), with associated r;, and r,,. Eventually it is true that, whenever Py executes line 24, it makes the link

unbalanced. Similarly, whenever P, executes line 15 it makes the link balanced.

Following c,,, the status of any link (P, —P,) is completely determined by irg, ry.color, ry, irg, .color, the
four tuple of these values is called the link values in configuration c . Apriori, the link values may have any combina-
tion of binary values. Observe that the two central bits represent the actual colors of the link’s registers, while the
two leftmost (rightmost) bits represent the local information of P, (P,) on those colors (following c,, re.color is
equal to the value of ory, ). We use the notation (10 — 0 0),[P, read],(0 0 — 0 0) to denote the change of the link
status from (1 0 — 0 0) to (0 0 — 0 0) by a read operation of Pr. We show that the link behaves properly, accord-

ing to the protocol by proving the following Lemma:
Lemma 4.7:

In every arbitrary fair execution of the protocol, eventually the link values of every link in the network are changed
repeatedly according to the following legitimate cycle:

(0 00 0),[Pf write],(0 1> 0 0),[P, read], (0 1 -0 1),[P, write],

0 1->11)[Prread],(1 151 1),[P; write],(1 0 —> 1 1),[P, read],

(I 01 0),[P, write],(1 0— 0 0),[P; read],(0 0 — 0 0).
Proof:

By corollary 4.6 there exist a configuration ¢,, in which the color of every r;; is equal to or;;. Following c,, every link
that its link values are in the legitimate cycle has always only one possible change in its link values, the one that
transfers it to the next link values in the cycle. Hence, it is sufficient to show that the links values do converges to
one of the legitimate values.

We proved that any (non leaf) processor executes line 24 infinite times, hence executes the procedure
instruct_next_son infinitely often. Every such execution consists of closing an instruct register, reading the value of

the corresponding confirm register, writting (if necessary) to the instruct register and then opening it. Denote a
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sequence of configurations from the configuration in which ry, is closed to the first subsequent configuration in
which it is open as a close period of ry,. Observe P, outgoing link (Py—P,) and trace its values during the close
period of ;. During this close period P, can change the color of 7y (executing line 15 or 24) at most once since
after any such change, P, must read ry, . During the close period of ry, any try of P, to read ry, keeps P, in its inner
loop and does not affect the link values. When P, closes rj, the link values may be in arbitrary combination. Con-
sider the following cases of schedules within the close period of r,:
Case 1: P, does not change r,; during the close period.
Case 2: P, changes r; before P, read from it.
Case 3: P, changes ry after P, read from it

In the two first cases P, reads the updated value of r,y and make the link unbalanced (if it is not already unbal-
anced) hence the link values in the end of the close period are (10 — 1 ?) or the symmetry case (01— 07?) (the
question mark stands for either 0 or 1). Fortunately the above link values are in the legitimate cycle. The third case
start the same as the two first i.e. in the configuration that follows P, writing, the link values are either (10—517?)
or (01— 07). However in this case P, changes the value of r,r to be the same as irj, and balances the link. Hence
the link values in the end of the close period are either (10— 00) or (0 1 — 1 1) that are in the legitimate cycle.
(Figure 4.5) 0O

By the above lemma there exist a configuration c,,, #42, and ¢32t,, such that every link holds the legitimate
cycle values. We proceed the proof by combining the above results in order to show that eventually the system con-

verge to a specific configuration c;,.
Lemma 4.8:

Following c,, there exist a configuration c,, in E such that the color of all the communication registers and internal
variables is 0 (1).

Proof:

Define a phase of a processor P; in E, as the sequence of configuration starting with a configuration in which all the

color of the internal variables of P; are 0 (1) and ends in the first subsequent configuration in which they are 1 (0).

E is a fair execution, hence following c,, each processor is activated infinitely often. By corollary 4.6 and by

the code of the processor every processor has infinite number of phases in E , specially the root processor. In the end
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of k<d (d is the depth of the tree) phases of the root processor all the internal variables and registers in the subtree,
that includes the processor that are in distance k or less from the root, have an uniform color. We proved in Lemma
4.7 that after the first closing and opening of r the link values converges to one of the legitimate cycle values.
Notice that from this stage of the execution whenever Py reaches (0 0 — ? ? ) the link values are (0 0 — 00 ) and
P, is waiting for farther instructions. When the root processor begins its first phase (following c,) all its outgoing
links are balanced and colored 0 (1). When it finishes this phase all its outgoing links are colored 1 (0). During the
phase of the root processor all its sons change the color of their confirm register to fit its change. When a processor
changes the color of its confirm register then the color of all its internal variables is equal to the color it is going to
write. Moreover the processor must execute a serial write actions to its instruct registers so they fit this color. After
one more phase of the root we can be sure that all the processors in distance two from the root did changed their con-

firm registers color to fit the root’s color and so forth. O

We proceed by showing that in any configuration that follow ¢;, at most one processor is privileged. Recall
that a privileged processor in our protocol is a processor that executes line 15 or 24 i.e. the critical section.
Lemma 4.9:

Let E be an arbitrary fair execution. Every configuration ¢, that follows ¢, (12t4) in E satisfies the following asser-
tions:

(a) Exactly one active processor, P, , exists.

(b) For any P;#P, and every neighbor of P;, P, the color of ir;; is equal to the color of T

(c) For any neighbor of Py, P;, except may be one, the color of iry is equal to the color of ry.
Proof:

First recall that by corollary 4.6 (2) and due to the fact that t2t42t, for every i j rij=or;;. We proceed in the prove

of the Lemma by induction over ¢.

Base Case (t=t,):

Assertion (a): In ¢,, all the incoming links are balanced hence the root processor is the only active processor.
Assertion (b) and (c): By the definition of c,, the color of all registers and internal variables is 0.

Induction Step:
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We assume those assertions hold for the configuration ¢, and we prove, that they hold for the configuration that
immediate follows itin E, ¢;41.

Case 1: Let P; be an arbitrary non active processor of ¢,. Assume that c,,, is reached from c, by a single step of

P;. During this atomic step P; does not change the color of its communication registers or internal variables.

Proof: (Case 1)

By the definition of non active processor it holds that it has at least one unbalanced outgoing link and/or a bal-

anced incoming link. By assertion (b) at least one of the predicates all_out_link balanced or

in_link_unbalanced is false. Therefore the only write actions, in a color field of a register, taken by P; are

those in lines 2,7,8. Since 2, those actions do not change the color of any communication registers. Moreover

by assertion (b) any read action does not change the corresponding internal variable. Hence in c,,, the asser-

tions (a) to (c) hold.

Case 2: Let P, be the active processor of ¢,. Assume that c,,, is reached from ¢, by a single step of P,. then

assertions (a) to (c) hold.

Proof: (Case 2)

consider the following cases:
Case 2.1: P, reads. The read action assigns to one internal variable irj, the color of ;. If the assignment
to irp changed its color then by assertion (c) in ¢,4; every internal variable has the same color as its regis-
ter. Otherwise no changes occur in the value of a register or internal variable. Hence assertion (a) to (c)
hold in ¢,,;.
case 2.2: P, writes. The only lines in the code that contain an atomic write that might change the color of
a register are 15,24. A processor can execute lines 15 or 24 when the predicates all_out_link_balanced
and in_link_unbalanced hold. By the definition of the active processor it holds that the incoming link of
Py is unbalanced and all outgoing links of P, are balanced. Using assertion (c), in ¢, the color of at most
one internal variable is not equal to the color of its corresponding register. However if the color of one
internal variable is not equal to the color of its corresponding register, one of the predicates
all_out_link_balanced or in_link_unbalanced does not hold. Hence if P, executes lines 15 or 24 the
colors of any internal variable in ¢, is equal to the color of its corresponding register. When P, executes
line 15 or 24 it either makes its incoming link balanced or one of its outgoing links unbalanced hence in

¢:+1 Py is not active. By the observation of Lemma 4.2 there is always at least one active processor, hence
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the processor, P, that is related to the register that was changed by P is the only active processar iim ¢,4;
and has exactly one internal variable iry; that is different from r;;. Hence assertion (a) to (c) hold im c,.
a

Lemma 4.10:

In every configuration c, that follows c,,, 124, at most one privileged processor exist.

Proof:

By Lemma 4.9 in ¢, assertions (a) to (c) hold. Using assertion (b) we prove that any non active processar is not
privileged. Assume toward contradiction that there is a non active processor, P;, that is privileged in c,. By assertion
(b) of lemma 4.9, in ¢,, P; holds the updated values of the register of its links. Since P; is not active at least ane of
the predicates all_out_link_balanced or in_link_unbalanced does not hold. Hence when P; executes line 13 or 23 it
skips line 15 or line 24 respectively; this is contradiction to the assumption that P; executes line 15 or 24 in g,. By
assertion (a) of lemma 4.9 exactly one active processor exist in c,, hence at most one privileged processor existin c, .

O

Corollary 4.11:

The protocol is self stabilizing relative to the set L(Mutual Exclusion).
Proof:

By lemma 4.10 at most one privileged processor exist hence the [exclusion] property hold.

By corollary 4.6 each processor executes line 15 or 24 infinitely often hence the [fairness] requirement holds. O3

5. Mutual-exclusion Protocol for dynamic networks

In this section we combine the protocols from the previous sections to obtain a mutual exclusion protocol for
dynamic networks. Denote the spanning tree protocol by Pry. Denote the mutual exclusion, on tree structure, proto-
col by Pr,. The communication registers in the system are divided into two main fields the first used by Pry and the
second by Pr,. Any processor P; execute the program of each protocol one after the other first a step in the program
of Pr then a step of Pr; and again Pr, and so forth. During execution of Pr, the processors uses the values of the
field of the communication registers related to Pr, as a given parameter. Pr, uses these values as a parameter for the

number and orientation of adjunct links in the spanning tree.
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It is clear that in a fair schedule each processor executes each Pr; infinitely often. Hence Pr, stabilizes and
reaches a Isc; € L (Spanning Tree). Whenever Pr, reaches Isc; € L (Spanning Tree) it encodes by the communication
registers value a spanning tree. From this moment Pr, uses the correct parameters for the number and orientation of
its adjunct links in the spanning tree. Hence,Pr,, the mutual-exclusion protocol on the spanning tree converges to

Isc; € L (Mutual Exclusion). It is clear that Pr achieves mutual-exclusion on arbitrary connected network.

NOTE: combined protocols are interesting since their correctness proof might be easier. In sequential research we

will give a wield definition to self stabilizing combined protocols.

6. Concluding Remarks

Self stabilization was defined as an independent property of protocols. The viability of the new definitions was
demonstrated by presenting self stabilizing protocol for mutual exclusion in dynamic systems with arbitrary com-

munication graph. Our protocol is correct with respect to the most relaxed kind of atomicity.

The spanning tree protocol has the following property: The size of the registers of a processor is unbounded.
This property matters only for dynamic systems where the final number of processors is unknown. If an apriori
bound N on the number of processors in the system is known then the size of each register is O (logN') which looks

very reasonable.
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Abstract

Self-stabilization is an abstraction of fault tolerance for transient
malfunctions. Intuitively, a self-stabilizing program resumes normal
behavior even if execution begins in an illegal initial state. Previously,
sel{-stabilization was handcrafted into a program. Our goal is a su-
perimposition by which a non-stabilized program can be mechanically
augmented to yield a self-stabilizing one. A precise definition is given
of a program being a seli-stabilizing extension of a non-stabilizing pro-
gram. We also clarify which properties are guaranteed to eventually
hold in such an extension. The computational model used is that of
an asynchronous distributed message-passing system. We contrast the
difficulties of self-stabilization in this model with those of the more
common shared-memory models. For processes connected in an ar-
bitrary graph of FIFO channels, we demonstrate a superimposition
based on repeated global snapshots that creates a self-stabilizing ex-
tension for a wide class of programs.
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1 Introduction

The concept of a self-stabilizing distributed program was introduced by
Dijkstra [Dij74]. Self-stabilization requires that a program executing with
an arbitrary initial state (including arbitrary control locations) eventually
must reach a legitimate state and thereafter remain in legitimate states. In
other words, the property “the program is in a legitimate state” is stable
(see [CL85]) and eventually true.

Self-stabilization is an abstraction of fault-tolerance for a model in which
transient faults corrupt data, messages, and location counters (but not the
program code). Each such fault is assumed to be followed by a long period
without additional faults. The difficulty of self-stabilization lies mainly in
the fact that a process has no way of distinguishing between an initial state
and one that occurs during the computation. For example, the assertion
{z = 0} does not always hold following the code z := 0 since the initial
control state may be just after this statement, without it having actually
executed. Similarly, control of a process can be just after a send instruction
in a message-passing model, without a message having actually been sent
and with no indication of this fact.

Although a number of self-stabilizing programs have been published,
careful and subtle reasoning must be employed to verify their correctness.
The elegance of such custom-made self-stabilizing programs is often impres-
sive. However, a more generally applicable approach in our view requires
separating the self-stabilization from the original algorithm design. This
separation reduces the complexity of design and encourages the reuse of
valuable techniques that are otherwise hidden when encoded in particular
algorithms.

In the following section, the computational model is described infor-
mally and compared with other approaches. In Section 3 we define the
concept of a program being a self-stabilizing eztension of a non-stabilizing
program. Section 4 contains a theorem clarifying which properties are guar-
anteed to eventually hold in such an extension. Then, using these defini-
tions, in the subsequent sections we give a methodology for creating a self-
stabilizing program that is an extension of a non-stabilizing program. In
particular, self-stabilizing versions of global snapshot and reset algorithms
are superimposed on a non-stabilizing program to yield a self-stabilizing
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extension.

2 Relation to other models

The computational model used in this paper is that of an asynchronous
message passing system. A message passing system is a collection of pro-
cesses that are connected by FIFO communication channels. Processes
may exchange values only by transmitting messages. Most previous work
in this area uses a shared-memory model. The system is asynchronous in
that there are no bounds on either relative process speeds, message deliv-
ery time, or channel capacities. We do assume that every message sent
is eventually received and that every statement whose guard remains true
is eventually selected for execution. In the initial state of such a system,
process states, location counters, and channels may have arbitrary values.

2.1 Previous results

Dijkstra[Dij74] demonstrated the concept of self-stabilization through an
example that identified the legitimate states as those with exactly one en-
abled operation (called a privilege). His solutions thus are examples of
self-stabilization for a form of mutual exclusion (or, equivalently, for a to-
ken ring with a single token).

As originally presented, self-stabilization is a property of a program,
relative only to the definition of legitimate states. Most published algo-
rithms [Dij74,Lam84,GE88,BP89,BGW8&9] follow Dijkstra in that they deal
with mutual exclusion or token-passing. They present a program and then
demonstrate that the self-stabilization is built-in. Lamport’s mutual exclu-
sion algarithm[Lam84] is the exception in that he creates a self-stabilizing
program by inserting statements into a non-stabilizing program.

Since the original definition of Dijkstra, emphasis has been put on
devising algorithms, rather than providing a precise semantics for self-
stabilization. In [Lam84], Lamport defined a transient malfunction behav-
ior of a shared-memory algorithm. This is an execution in which each pro-
cess executes a single malfunction operation that arbitrarily assigns values
to its variables, and then begins normal operation at any point in its code,



following the code of the algorithm. Then an algorithm is self-stabilizing
for a property A if A eventually holds for every transient malfunction be-
havior of the algorithm. He leaves open the domain of the values in the
malfunction operation.

2.2 Difficulties of the model

As will be demonstrated, there are several phenomena that must be over-
come in order for a program to be self-stabilizing in an asynchronous
message-passing environment. The primary one is apparently sent mes-
sages. In a local process state intended to follow the sending of a message,
there is no way to determine whether (a) the desired message has actually
been sent or (b) this is merely a false impression, and the local state is part
of the initial global state. This could cause the system to deadlock with
processes waiting for response messages that will never come because the
request message was never actually sent. One approach to overcoming this
difficulty is causing a message to be spontaneously sent “again” from time
to time (which might be sending it for the first time after a false impres-
sion). Such repeated messages are called prods and are used in this model
to ensure liveness. Prods can sometimes be avoided if some other messages
are guaranteed to be sent without first requiring receipt of a message.

This need to spontaneously send messages is one symptom of the differ-
ences between a message-passing model and a shared-memory model, when
self-stabilization is considered. In shared memory, the fact that a vari-
able has an unexpected value can be determined by reading (testing) the
variable and only writing to it when a problem is detected. In a message-
passing context, a process cannot examine the contents of channels and thus
must either use prodding or wait for another message, with the danger of
deadlock in the system.

Another difficulty is of infinite propagation of false channel information.
Since the channels can initially have arbitrary messages on them, the effects
of these messages must not be to indefinitely generate new messages that are
possible only in response to the misleading incoming messages. Otherwise
an acceptable global state might never be reached. At some point, these
injurious initial messages and injurious new messages generated due to them
must be purged from the system.



2.3 Comparison with other fault models

In some respects self-stabilization seems easier than other forms of fault-
tolerance: every process is guaranteed to participate in the algorithm, to
execute only according to its code, and never to simply cease participat-
ing. This differs from, for example, Byzantine failures [LF82,LSP82], where
some processes can ignore the intended program and take arbitrary (usu-
ally malicious) steps, or even crash failures, where some processes can cease
participating. However, these other models allow only a subset of the pro-
cesses to fail and the correctness criteria only relate to the processes that
have not failed. In self-stabilization, all processes may have arbitrary ini-
tial states, yet every process must stabilize so that legitimate global states
occur. Moreover, in this model no process can ever “depend” on the val-
ues in its local memory: even accurately counting the number of incoming
messages is impossible since the number in the counter may have no rela-
tionship to the number of messages actually received.

A more precise statement of this last difficulty is that although self-
stabilization is globally achievable, no process in the system can ever know
that the system has self-stabilized. That is, there is no local state of a pro-
cess for which it is guaranteed that all consistent global states are legitimate
(since the initial state could be globally illegitimate, but have the “knowing”
local state as its projection on some process). The practical implication of
this inability to know when self-stabilization has occurred is that no pro-
cess can ever switch from an inefficient but self-stabilizing version of an
algorithm to a more efficient version that ignores self-stabilization. At the
point of switching, the process would have to know that self-stabilization
has already taken place, which is impossible. Many of the terms used here
informally are defined more precisely in the following section.

3 Semantics and Definitions

Our goal is a means of creating a self-stabilizing program from a non-
stabilizing one. Toward this end, we precisely define the notion of what
it means for one program to be both self-stabilizing and “an extension” of
another program. The definitions below are for the interleaving execution
model of concurrent systems.



A local state of a process is an assignment of values to the local vari-
ables and the location counter. The global state of a system of processes is
the cross product of the local states of its constituent processes, plus the
contents of the channels, where here we assume FIFO queues of messages.
The channels are not part of the local state of any process. Each local vari-
able and location counter has a domain of values that it may assume. The
semantics of individual operations are usually given by presenting the pos-
sible atomic steps (transitions) and the appropriate changes in the states.
These are not described here. An ezecution sequence of program P is a
(possibly infinite) sequence of global states in which each element follows
from its predecessor by execution of a single atomic step of P. One state
is a successor of another in an execution sequence if it appears later in the
sequence. Finite execution sequences represent terminated computations.
The set of all possible execution sequences of program P is denoted sem(P)
and defines the semantics of P. Note that no assumption is made about
the initial state of an execution sequence, except that all values are from
the appropriate domain.

The definition of self-stabilization depends on what are considered the
“legitimate” states of a program. We could define the legitimate states of
program P as those satisfying a predicate (called P’s specification). Alter-
natively, these states could be defined as those obtainable from a “normal”
execution. For the purpose of defining self-stabilizing extensions of a pro-
gram, we choose the latter. Of course, the normal initial states could also
be defined using a predicate but, for the sake of concreteness, we choose
a particular common possibility. Those initial states in which the loca-
tion counter of each process is 0 and all channels are empty are said to
be normal: the legal (i.e., intended) semantics of program P is the subset
of sem(P) containing only sequences with normal initial states and is de-
noted by legsem(P). Every global state in a sequence from legsem(P) is
also defined to be legal.

Note that the set of legal global states is, in general, much smaller than
the set of possible global states, since the latter includes many combinations
of values that do not arise in any legal execution sequence. The illegal
ezecution sequences are those that have initial illegal states. There is yet a
third class of execution sequences: those with initial states that are legal,
but not normal, e.g., with control not at the beginning of the code. These
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are clearly suffixes of legal sequences. In the continuation, note that a suffix
of a sequence can be the sequence itself.

Definition 1 Program P is self-stabilizing if each sequence in sem(P)
has @ non-empty suffiz that is identical to a suffiz of some sequence in
legsem(P).

In other words, from some point on every computation is identical to a legal
one. Now we turn to the relation between a program and an extension. A
projection of a global state onto a subset of the variables and the messages
on the channels is the value of the state for those variables and messages.

Definition 2 Program Q is an extension of program P if for each global
state 1n legsem(Q) there is a projection onto all variables and messages of
P such that the resulting set of sequences is identical to legsem(P), up to
stutiering'.

Definition 3 Program Q is a self-stabilizing extension of program P ifQ
18 self-stabilizing and also is an extension of P.

That is, considering only those portions of Q’s global states that correspond
to P’s variables and messages, the legal semantics of P and Q are identical
if repetitions of states are ignored. Moreover, Q is self-stabilizing for all its
computations. When begun in normal initial states, P and Q have the same
possible executions (relative to P’s state, ignoring location counters) and Q
resumes the intended semantics when begun in an illegal initial state. For
legal but not normal initial states, Q merely executes the suffix of a legal
computation, relative to P. Note that no correspondence is required among
the illegal computations of P and Q, or among the location counters.

In particular, program P may terminate with control locations after
all statements of its program (or, equivalently, at halt statements), but Q
generally has no such halting locations. Otherwise, Q could have an initial
state with its control halted, but with an illegal global state relative to the
messages and variables—and thus not be self-stabilizing. The extension for
a terminating computation of P has execution sequences that eventually
repeat a final state of P forever, changing only variables not present in P.

!When comparing sequences, adjacent identical states are eliminated; this is sometimes
called the elimination of stuttering.



4 Limits on Self-Stabilizing Extensions

Before demonstrating how a self-stabilizing extension of a program is cre-
ated, we consider which properties can hold in the extension. A simple
example illustrates the potential problems. Suppose that the specification
of program P is “a 1 is eventually output” and that “1,0,0,... ” is the only
legal output sequence of P. Furthermore, suppose that program Q outputs
only all-zero sequences when started in an illegal initial state and otherwise
produces the same sequence as P. Then Q is a self-stabilizing extension
of P but does not eventually satisfy P’s specification. The problem is that
some sequences in legsem(P) satisfy the specification but have suffixes that
do not.

The following theorem characterizes properties that can hold in self-
stabilizing extensions.

Theorem 1 IfQ is a self-stabilizing eztension of P, and A is an assertion
in (future) linear temporal logic over variables and messages of P, then:
A holds for a suffiz of every ezecution sequence of Q iff for each sequence
in legsem(P) either A is true in the final state (for finite sequences) or A
is infinitely often true.

Proof Since A is in the future fragment of linear temporal logic, for a
suffix S of a sequence T, the truth of A for S is independent of the states
in T but not S. That is, the states before S are irrelevant to the truth of
Aon S.

=. In sem(Q), every suffix of an execution sequence is in itself an
execution sequence. Since A is true for a suffix of every execution sequence
of Q, if the sequence is infinite, A is true infinitely often along the sequence,
because it only relates to the suffix, as noted above. Similarly, if the state
relative to P repeats forever from some point on, A must hold in this “final”
state, since it too is an execution sequence. Since Q is a self-stabilizing
extension of P, by definition, for each sequence in legsem(P) there is a
sequence in legsem(Q) that is identical w.r.t. P’s state. A must be true
for these sequences of legsem(Q) and their suffixes, since they are a subset
of the sequences in sem(Q), and thus it must also hold infinitely often (or
in the final state) for the sequences in legsem(P).



<. If A is infinitely often true for the infinite sequences in legsem(P),
then it is infinitely often true for the infinite sequences in legsem(Q) that
correspond to them. Similarly, for the finite sequences, if A is true in
the final state, then Q will have a sequence in legsem(Q) that eventually
repeats the final state of P forever, changing only variables and messages
not in P, and thus not affecting the continued truth of A in that sequence.
Every sequence in legsemn(Q) has a projection onto one in legsem(P). Since
Q is self-stabilizing, every sequence in sem(Q) has a suffix identical to one
in legsem(Q), and thus satisfying A. g

Note that properties that cannot hold in a self-stabilizing extension can
often be rephrased as ones that do. For example, if legsem(P) contains only
the infinite sequence of values (0,1,0,1,...), then an assertion that eventually
the number of 1’s and of 0’s will be equal may never become true (e.g., if
in Q there are sequences that begin with (1,1,1,0,1,0,1,...)). On the other
hand, an assertion that infinitely often there is a state followed by a later
state for which in the states between them there are equal numbers of 1’s
and 0’s is true for every sequence in a self-stabilizing extension.

5 Superimposition of Self-stabilization

In this section, some general considerations on superimpositions are in-
troduced. We also outline a superimposition to provide a self-stabilizing
extension for a non-stabilizing program. A crucial component of this su-
perimposition, a self-stabilizing global snapshot algorithm, is described in
the following section and it is proven correct in Section 7. Another com-
ponent, a reset algorithm, is described in Section 8. The complexity of the
superimposition is analyzed in Section 9.

A superimposition is a collection of fragments of code and generic trans-
formations that is to be merged with another algorithm (called the basic
algorithm) in order to produce a combination satisfying properties not seen
in the basic algorithm alone. The additional code (called the imposed
statements) is interleaved with the result of transforming the code of the
basic algorithm. Examples are termination detection algorithms, global
snapshots, and deadlock detection algorithms that are superimposed onto
basic programs that do not treat the issue handled by the superimposition.



Superimposition has been considered in [BF88] and [Kat87].

The idea of the superimposition that we present is to repeatedly (at-
tempt to) take snapshots without interfering with the underlying basic
computation. The results of these snapshots are analyzed in a distinguished
initiator process, and, if necessary, all processes are reset to default values
in a way that will eventually guarantee a legal global state. The properties
of the extended program that guarantee self-stabilization are (1) eventually
a snapshot that accurately reflects the state of the system will be success-
fully completed (even though the initiator process cannot know when this
occurs), (2) eventually, if an illegal state is revealed in the accurate snap-
shot, a reset wave will succeed in establishing a legal global state, and
(3) thereafter, the snapshots will be accurate, and will be of legal global
states, so that no further reset operations will be done. The last condition
guarantees that eventually the basic computation can proceed, so that a
suffix of a legal computation will be computed, relative to the basic com-
putation. The extension will necessarily continue forever taking snapshots
interleaved with the basic computation, but these will not interfere with
the “real” work in any way.

In defining a superimposition, the class of basic algorithms to which
it is applicable should be specified. Under those assumptions about the
nature of the basic algorithm, the combination of the superimposition with
any algorithm in the class can be proven to satisfy the specification of
the superimposition. Thus, in order to define a superimposition that will
transform a given program P into a program Q so that Q is self-stabilizing
w.r.t. P, some basic restrictions on P can be articulated.

First, a predicate must exist that can determine whether or not a rep-
resentation of a global state assembled in the variables of a single process
is legal. Self-stabilization has been considered trivial for a single sequential
process precisely because such an assumption is common. Second, it is as-
sumed that if repeated accurate snapshots are made, and only legal states
are detected, then the system is indeed in a legal state. This follows when
the legal states are identified with those that could occur in legsem(P).
Just as in [CL), the snapshot taken in the algorithm is a possible ancestor
of the present actual global state, and thus the actual state must also be a
legal state of legsem(P), as required.
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6 A Self-Stabilizing Snapshot Algorithm

6.1 Overview

Our goal in taking snapshots is to eventually cause the variables of some
process to contain a representation of a global state of basic program P,
the program on which we perform our superimposition. In the algorithm
introduced in this section, process 0 is given the special role of being both
the initiator of snapshots and the process whose variables contain its results.
The assignment of this role to any process in P is arbitrary.

We assume that we are given a system of n processes whose connectivity
graph is described by a set E of ordered pairs such that (z,5) € E if and
only if there is a channel from process i to process j. So that snapshots may
be taken and assembled in the variables of a single process, it is necessary
that E describe a strongly-connected graph.

Definition 4 At any global state o, a process is said to have an accurate
snapshot for a if local variables of the process contain a representation of
a global state that 1s a possible successor of a and a possible predecessor of
o.

Algorithm Snapshot, described in this section, is a self-stabilizing algo-
rithm that permits process 0 to iteratively obtain accurate snapshots for
the state that P had when each iteration began. The superimposition of
this imposed algorithm onto P is a self-stablizing extension of P. A trivial
assumption is that the imposed messages created by Algorithm Snapshot
are syntactically distinguishable from the basic messages that are created
by P. Before introducing the text of the algorithm, we attempt to give the
reader an intuitive feel as to how it works.

We emphasize at the start that a self-stabilizing algorithm is only re-
quired to eventually establish the desired property, and not to establish it
tmmediately. It is both acceptable and likely (e.g, when the initial state is
not a normal initial state) that some number of inaccurate snapshots will
initially occur. The sole requirement is that, from some point onwards,
only accurate snapshots of P are obtained by process 0.

Chandy and Lamport[CL85] have described an algorithm that, when su-
perimposed onto a basic program P, takes a single snapshot of P’s state.
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macroCL(j):
Process 1,7 2 0

—initiated = [initiated := tTue;
eoc[j] := true;
eoclk] := false, forall k # j : (k,7) € E;°
record[k] := nil, for all k : (k,?) € E;
basic_state := state of P
/ * Send® a markertoall k : (i,k) € E %/

)
initiated A —eoc[j] = eoc[j] := true

initiated A eoc[j] = skip lllegal state

3 A side effect not shown is that process i starts to record in variable record[k] all
basic messages of P that are received from each neighboring process k when eoclk]

is false. ; \
®In a legal state, the marker will be piggy-backed onto a token message of the

algorithm that invokes this macro.

Variables:
e basic_state is state of the basic program P.

o initiated is a Boolean indicating that initialization has been per-
formed.

o eoclj] is a Boolean indicating that a marker message has been received
from j.

o record[k] is the sequence of basic messages received from k while
eoc|k] was false.

Figure 1: Chandy-Lamport snapshot algorithm.
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This algorithm, which works in a general FIFO network, appears in Figure
1 as a macro® CL to be invoked by each process i upon receiving a message
from process j. When 7 receives the very first message (called a marker)
it saves P’s local state in a variable, begins to record the basic messages
henceforth sent by P, and propagates the marker to its neighbors. Re-
ceipt of subsequent markers causes the algorithm to stop recording basic
messages on the channel on which the marker was received. After each pro-
cess has received one marker per incoming channel, it ceases to participate
in the snapshot; after all processes cease to participate, the algorithm is
terminated.

The fact that Chandy and Lamport’s algorithm takes a single snapshot
and terminates means that it alone cannot be self-stabilizing, as was pointed
out is Section 3. Our solution is to impose a control program onto their
algorithm; the resulting algorithm takes repeated snapshots of basic pro-
gram P by iteratively invoking the single snapshot algorithm (see Figure 2).
The control program regulates the iterative procedure by initiating waves
of token messages. It also insulates the Chandy-Lamport algorithm from
any message that would violate its assumptions. For example, an invariant
of the single snapshot algorithm is that exactly one marker is received on
each channel. This assumption can clearly be violated by marker messages
that may be present in initial states that are not normal. Lastly, the con-
trol program establishes the initialization condition (initiated = false) for
each iteration of the single snapshot algorithm.

As was mentioned earlier, the process chosen to serve the role of process
0 behaves differently in that it both initiates and obtains the final results
of each iteration (see Figure 3). A new single snapshot iteration is initiated
by creating a new marker and its termination is detected when reported|k]
becomes true for all k. The report message sent by process i to signal
local termination also contains a field PIECE that contains the state and
channel information that it has recorded. Thus, at termination, process 0
has a representation of a prior global state of P in its piece variables. A
crucial property (proved as Lemma 2) is that nothing may prevent process

2A macro, as opposed to a procedure, has no state of its own; it merely modifies
the variables of the invoking program. Thus, we can look at macro invocation as an
abbreviation for the statements contained in its body, after parameter substitution has
been performed.
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0 from advancing to the next iteration.

The difficulty in defining the control program is that the arbitrariness
of the initial state means that no variable or message may be relied upon to
always serve its intended purpose. For example, initially two processes may
have different values in the local variable (Current) that defines the itera-
tion in which each is participating. This introduces the potential problems
of deadlock and the infinite propagation of messages. Deadlock is prevented
by introducing a non-reactive statement (RECPROD) to creates the prods
referred to in Section 2.2. These prods themselves introduce problems in
that it is now possible for messages created in different iterations to simul-
taneously be in the system. To distinguish between them, we add to each
token and report message an integer field VAL, which contains an iteration
number. Infinite propagation is avoided by adding to each message a field
PATH, which is a sequence of process identifiers.

6.2 Behavior of processes

At a high-level, the behavior of each process other than 0 in executing
Algorithm Snapshot is to“react” to the receipt of a message m, containing
the values v, p, and r in the VAL, PATH, and PIECE fields respectively. If
predicate IsNext recognizes m as a token meant to start a new iteration,
the process executes statement (NEXT), which changes its iteration counter
and invokes macro CL. Should m be recognized as a marker message (i.e.,
predicate IsMarker holds), the process executes statement (RECSNAP) and
invokes the CL macro. If neither of the above hold, the message is recog-
nized as a prod (statement (RECPROD)) and is passed on to its neighbors.
Additionally, the prod may cause a report message to be sent to process
0 if predicate Finished, which determines whether local termination has
occurred, is satisfied. The correct implementation of these predicates is
made non-trivial because of the multitude of global states (particularly the
illegal ones) in which they may be evaluated.

Process 0’s behavior is different in that it (a) initiates each new iter-
ation of the single snapshot algorithm (by executing statement (START))
(b) non-reactively creates prods by executing statement (GENPROD). (c)
saves the information contained in report messages by executing statement
(RECREPT). In order to make the behavior of process 0 as similar to the
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Process i > 0, upon receiving token message m with VAL = v, and
PATH = p from process j:

(RECSNAP) IsMarker = [CL(j); Finished = Report]
(DEJAVU) IsCntl A Seen = skip
(NEXT) IsCntlA -Seen AIsNext = [Current:=v;

Propagate;

initiated := false; CL(7)

)

(RECPROD) IsCntl A -Seen A -IsNext = [Propagate; Finished = Report]

Variables:

e Current is the “iteration number”.
Definition of predicates:

o IsMarker = -eoc[j] A (v = Current)

IsCntl = ~IsMarker = eoc[j] V (v # Current)

Seen = (¢ appears in sequence p) A(( # 0) V (p # 0))

IsNext = (v > Current)

Finished = (v # Current) V (A ek €oclk))

Figure 2: Snapshot algorithm for process ¢ > 0.
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Process 0, upon receiving token (or report) message m with VAL = v, and
PATH = p, (and PIECE = r) from process j:

(SELFSNAP) IsMarker = [CL(j); Finished = Report]
(SELFSENT) IsCntlA Seen = skip
(RECREPT) IsCntlA —~Seen A IsReport = [k := first(p);
~reported[k] =
[reported[k] := true; piece|k] :=1]
)

(SELFPROD) IsCntl A -~Seen A —IsReport = [Finished = Report]

Process 0, spontaneously:

(GENPROD) true = Start

(START) ARzl reported(k] = [reported[k]:= false, for all k > 0;
Current := Current + 1;
Start;

initiated := false; CL(0)

]

Variables:

o reported|k] is a Boolean indicating that process k has ended its par-
ticipation in the current iteration and that piecelk] is k’s portion of
the global state recorded.

Definition of predicates:

e IsReport = (v = Current) A InReportForm,
where InReportForm is true only on report messages.

Figure 3: Snapshot algorithm for process 0

16



behavior of other processes as possible, we assume a channel from process
0 to itself so that process 0 may react to its own messages. For example,
statement (SELFPROD) is executed when process 0 receives its own prod and
statement (SELFSNAP) invokes the CL macro when a marker is recognized.
This assumption is merely a convenience that avoids awkward coding.

A further convenience is the assumed existence of a few trivial macros
whose specifications follow. All but Start are invoked after process i has
received a message m whose PATH and VAL fields are equal to p and v
respectively. All variables are local to process i:

o Start is executed by process 0 in order to send a token message with
PATH = 0 and VAL = Current to each process k such that (0,k) €
E.

e Propagate is executed by process : > 0 in order to send a token
message with PATH = append(p,i) and VAL = v to each process k
such that (i,%) € E.

o Report is executed by process ¢ > 0 in order to send a report message
with PATH =i, VAL = v, and

PIECE = (basic_state, record[k],for each k : (k,) € E)

to process 0 according to some fixed strategy.

One self-stabilizing way of implementing the necessary strategy is to
define for each process a constant, loop-free path to process 0. Upon
receiving a report message, a process forwards it on the next link in
this path. Self-stabilization is achieved by encoding the path in the
immutable code rather than mutable variables.

7 Correctness of the Snapshot Algorithm

In this section we formally demonstrate that Algorithm Snapshot is a self-
stabilizing algorithm that eventually permits process 0 to iteratively obtain
accurate snapshots for the state that P had when each iteration began. The
proof proceeds by defining a certain class of good states, demonstrating that
such states are eventually repeated (Section 7.2), and demonstrating that
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an accurate snapshot is obtained when the single snapshot iteration begins
in such a state (Section 7.3).

Prior to defining the good states, we prove the eventuality of a state
with a certain simplifying property.

Definition 5 Message m' is an immediate copy of message m if

o m’ 1s sent by some process i as part of the action that it ezecutes upon
receiving message m, and

o m is identical to m ezcept that the PATH of m’ is the concatenation
of i to the PATH of m.

“Copy” is the reflezive, transitive closure of the ““mmediate copy” rela-
tion.

Definition 6 A global state o in ezecution sequence s is said to be purged
if every token and report message m in o is a copy of a message sent in a
prior state of s.

Recall that the initial state may have messages in the channels; the defini-
tion excludes copies of such messages. Note that, without loss of generality,
we assume that every process is evaluating the guard of one of the labelled
statements in the initial state. We can do this since an initial state that
does not satisfy the assumption (and any messages sent as a result) may
always be transformed into one that does. We now show the eventuality of
a purged state.

Lemma 1 (Eventually Purged) In every ezecution of Algorithm Snapshot
a purged state eventually occurs. The property of being purged 1s stable.

Proof The eventuality of a purged state follows by the eventual message
delivery assumption and observing that execution of Algorithm Snapshot
results in only finitely many copies of any message. The finiteness follows
from the fact that report messages are sent on loop-free paths to process 0
and that the act of copying a token message is guarded by predicate ~Seen,
which insures that a process does not copy its own copies. 1

Thus, we henceforth restrict our attention to execution sequences whose
initial state is purged.
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7.1 Liveness of Iteration

A fundamental property of our algorithm is now established: no matter
what the state, eventually process 0 may execute a (START) statement.
Therefore, by fairness, a new iteration always begins.

Lemma 2 (Iteration Liveness) In any ezecution of Algorithm Snapshot,
for any purged state a, there is some successor state o in which property
“reported[k] is true for all k” holds. Moreover, this property holds for each
successor of o until the nezt (START) statement is ezecuted.

Proof That the property remains stable until the next (START) state-
ment is executed may be seen by observing that reported[k] may be falsified
only by executing the next (START) statement.

Let v, denote the value of process 0's Current variable in state a.
We claim that eventually, there is some successor state of a in which either
“reported[k] is true for all k” already holds (in which case the lemma holds)
or in which every message is a copy of a message created by executing
statement (GENPROD) in a successor state of a. In the latter case, each
of these messages has field VAL = v, because process 0 cannot change its
Current variable until reported[k] becomes true for all k. By the continued
enabling and execution of statement (GENPROD) and the assumptions of
FIFO channels and eventual message delivery, there occurs a state in which
every message is a copy of a message created by execution of a (GENPROD)
statement in a successor state of a. By inspection of Algorithm Snapshot,
we see that repeated reception of these messages results in each process
eventually sending a report message with VAL = v,. (Process : must send
a report because it executes either (a) statement (RECPROD), (b) statement
(RECSNAP) or (SELFSNAP), or (c) statement (NEXT) followed by one of the
above. ). As each report is received by process 0, reported[k] become true
for each £ in turn (and remains true until the next (START) statement is
executed) until finally a state o results in which reported[k] is true for all
k. 1 '

7.2 Good states and their eventuality

We now define when a state is good. Intuitively, the good states are the
ones in which an iteration is guaranteed to terminate with an accurate
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snapshot.

Definition 7 A global state o 1s good if and only if

1. The value of the Current variable in each process is identical.

2. No message in o can henceforth cause IsNext to become true, for
any process i.

3. reported[k] is true for all0 < k < n.

In the next lemma, we establish that reaching a good state is unavoid-
able, no matter what the initial state.

Lemma 3 (Eventuality of good) In every ezecution of Algorithm Snapshot,
every purged state eventually has a good successor state. Moreover, each
successor of a good state remains good until the subsequent (START) state-
ment is ezecuted.

Proof Let a be a purged state. We must show that eventually some
successor state o is good. That successor states of a good state remain good
until a subsequent (START) statement is executed may be seen by inspection
of Algorithm Snapshot.

Let V' denote the finite set such that integer v € V if and only if, in
state a, v is the value of either the Current variable of some process or
the VAL field of some message. By Lemma 2, inspection of the guards,
and the assumptions of eventual message delivery and fairness, a state B
occurs in which process 0 has just executed a (START) statement and for
which v, the value of Current for process 0, exceeds the maximum value
in V. Eventually, for each 7 > 0, there is some successor state of # in which
process i receives its first copy of the token created at 3. By construction
of vg, the Current variable of process i is set to vy as a result of executing
statement (NEXT) in this state. Since no (START) statement creating a value
greater than v may execute until process 0 has received a report from each
: > 0, and since process ¢ may send such a report only after receiving the
first copy of the token created at 3, eventually some state y occurs in which
the Current variable of each process is equal to vg. The construction of
v also insures that no message in state v can henceforth cause IsNext to
become true when it is received by any process.
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Since both these properties are stable until the subsequent (START)
statement is executed, let o be the successor of ¥ (whose eventuality is guar-
anteed by Lemma 2) in which reported[k] is also trueforall 0 < k < n. g

We may now combine several previous results to demonstrate the good
states repeatedly occur.

Lemma 4 (Recurrence of good) In any ezecution of Algorithm Snapshot,
good states repeatedly occur.

Proof The proof is by induction. The eventuality of a first good state
is assured by Lemmas 1 and 3. Since purged is a stable property, eventually
every good state has a good successor, by Lemma 3. g

7.3 Good states result in accurate snapshots

In this section, we finally establish the correctness of Algorithm Snapshot,
drawing upon the work of previous sections. We show that an iteration
that begins in a good state will terminate with process 0 having an accurate
snapshot for the state that P had when the iteration began. Once we show
that Algorithm Snapshot invokes macro CL at the proper moments, this
will follow from the correctness of the Chandy-Lamport algorithm.

Theorem 2 (Good Snapshot) In any ezecution of Algorithm Snapshot,
eventually process 0 repeatedly obtains accurate snapshots for the state in
which each (START) statement is ezecuted.

Proof

We have already shown (by Lemma 4) that good states repeat. So we
need only show that accurate snapshots are obtained.

Let o be the good state in which a (START) statement is executed and
let v be the value of process 0’s Current variable in this state. Clearly
the immediate successor of ¢ is not good. We must show that in state
7, the next good state (whose eventuality is insured by Lemma 4), the
value of process 0’s Current variable is equal to v + 1 and that the con-
catenation of piecelk] for 0 < k < n is an accurate snapshot for . The
first fact is trivially seen by inspecting statement (START). The latter is
shown by demonstrating that the (START) statement executed at ¢ results
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in each process receiving the same messages at it would were it executing
the Chandy-Lamport algorithm in isolation.

In executing the (START) statement at o, process 0 performs the same
statements as an initiator of the Chandy-Lamport algorithm would, namely,
it invokes CL(0) with initiated = false, creates a new token (with VAL =
v + 1), and sends it to each neighbor. When each process receives a copy
of this token, we show that its behavior is just as it would be if it too were
executing the Chandy-Lamport algorithm in isolation.

First, examine how copies of the tokens created at o are treated by
each process i. When process i > 0 receives its very first copy of this
token, statement (NEXT) is executed and it behaves just as a non-initiator
process does in the Chandy-Lamport algorithm, namely it invokes CL(j)
with initiated = false, and sends a copy of the token to each neighboring
process. (For 7 = 0, these actions were previously done at ¢.) When process
i > 0 receives subsequent copies of this token, statement (RECSNAP) is
executed ((SELFSNAP) for i = 0), causing process i to invoke CL(j) with
initiated = true, which is again exactly the way that a process behaves
when receiving markers in the Chandy-Lamport algorithm.

Next, consider how copies of any other token are treated. At every
process, predicates IsMarker and IsNext are false for each token created
before o, by the goodness of ¢ and the monotonicity of values created by
process 0. The predicates are also false for each token created between ¢ and
~, since the FIFO channel assumption guarantees that eoc[j] holds when
received by 7 from each j and since no value greater than v is created before
~. Thus, the only possible effect of these tokens is to trigger execution of
statement (RECPROD) or (SELFPROD). But since creation of report messages
in this statement are guarded by predicate Finished, any such message is
created by 7 after the report created by executing statement (RECSNAP)
((SELFSNAP) for process 0) and therefore, by the FIFO channel assumption
(and the assumption that all reports from ¢ are sent on identical routes)
arrives at process 0 when reported[i] is already true. Therefore, only copies
of the token created at ¢ may affect the snapshot for 0. &
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8 The reset algorithm

By prior assumption, along with the text of basic program P, we are
given a predicate that recognizes representations of the legal global states
of P. Once process 0 has obtained each snapshot, it applies this predicate.
Should an illegal state be indicated, process 0 initiates execution of a reset
algorithm, which changes the global state of P to some default normal
initial state a.

The reset algorithm may be imposed onto Algorithm Snapshot very eas-
ily. Process 0 simply associates “flavor” with the VAL field of each token
and report message. To begin a normal snapshot, “vanilla” tokens are cre-
ated; to begin a reset, “reset” tokens are created. Upon receiving a “reset”
token, in addition to the actions described in Algorithm Snapshot, each
process suspends execution of P (discarding any basic messages that subse-
quently arrive) and changes its local part of P’s state to the values it would
have in a. Vanilla tokens are handled exactly as in Algorithm Snapshot,
with the addition that receiving such a token causes a process to resume
execution of P if it were suspended.

Because flavoring the tokens only modifies the state of P, it is trivial
to show that our previous proof, that accurate snapshots are eventually
repeatedly obtained, still holds. To see that executing the reset algorithm
in a good state really causes P to resume execution in the default normal
initial state a, consider how each process ¢ > 0 behaves when it receives
a “reset” token. By the FIFO property of channels and the fact that i
suspends execution of P before sending a “reset” token, it is easy to show
that, when process i’s eoc[;] variable becomes true the channel from process
J to process i is devoid of basic messages and remains that way until
the reset iteration ends. Thus, when process 0 begins the next vanilla
iteration, P resumes execution from a normal initial state. Basic program
P thenceforth remains in legal states and no further invocations of the reset
algorithm may occur.
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9 Improvements to Algorithm Snapshot

Note that the snapshots do not interfere in any way with the basic com-
putation: it can always proceed, except during a reset phase. Although
above the correctness has been emphasized, some simple techniques can be
used to drastically reduce the expected number of steps to self-stabilization,
under reasonable assumptions.

Gouda and Evangelist have defined the convergence span[GESS] of a
self-stabilizing system to be the maximum number of “critical” steps that
must be executed before a legal state is reached. For Algorithm Snapshot,
consider statement (START) to be a critical step. The set V, previously
used in the proof of Lemma 3, is defined by v € V if, in the initial state,
v is the value of the Current variable of some process or the VAL of some
message. Because statement (START) increments process 0’s Current vari-
able by 1, the convergence span of Algorithm Snapshot may be as much as
the difference between the initial value of process 0’s Current variable and
the maximum of V.

A simple trick to reduce the convergence span is to have each process
insert its Current value in each report message that it creates. When
executing statement (START), process 0 need only choose a value that ex-
ceeds the maximum value received in the last set of report messages. If
by chance there are no initial token or report messages (only arbitrary
Current values), the modified version will converge on the second iteration
to an accurate snapshot, followed by an accurate reset, if necessary. In the
general case, define the set W as the subset of V' with values greater than
or equal to the initial value of process 0’s Current variable. The modified
version will have a convergence span of at most the cardinality of W.

Due to the completely asynchronous model, and the need for prod mes-
sages to avoid deadlock, under the assumptions seen here there is no way
to bound the number of messages used for snapshots. The initiating pro-
cess could generate arbitrarily many prodding messages before any other
process completes its snapshot. A more realistic model would use abso-
lute time intervals and time-outs to control the frequency of snapshots and
prodding.

There is also a possible trade-off on the frequency of snapshot opera-
tions, relative to operations of the basic computation. If snapshots are

24



taken frequently, the system will self-stabilize when necessary, without
wasting significant basic computation time. In this case, the number of
steps needed afterwards to keep taking snapshots is large relative to the
basic computation. On the other hand, if snapshots are only taken after
some large number of basic computation steps, the self-stabilization will be
slower, but the subsequent cost will be lower. Of course, this assumes that
the basic computation cannot deadlock, even from illegal initial states.

10 Discussion

In this paper we have explored the limits of self-stabilization: we have
shown the impossibility of attaining certain properties in self-stabilizing
extensions and demonstrated thé possibility of mechanically creating self-
stabilizing extensions.

We have shown that it is impossible for certain properties to hold in self-
stabilizing extensions. However, we note that the impossibility is sensitive
to the exact statement of the property.

We have also demonstrated a superimposition that takes a basic pro-
gram P and creates a self-stabilizing extension of P. An alternate means
of creating this extension is to create a new program from scratch. The ad-
vantage of the superimposition is its generality: its correctness does not
in any way depend on the behavior of P and it may therefore be im-
posed in an automated fashion. But this is also its weakness: by start-
ing anew, we may take advantage of properties specific to P and cre-
ate an extension that is perhaps more efficient and elegant. One should
view the superimposition as demonstrating the possibility of a universal
methodology for creating self-stabilizing extensions. The existence of other
universal methodologies should be pursued. For example, our superim-
position imposed Algorithm Snapshot on top of P. But one may look at
Algorithm Snapshot itself as being the superimposition of a “control” algo-
rithm on top of Chandy and Lamport’s snapshot algorithm. A key feature
of the “control” is that it invoked its “basic” program (i.e., the Chandy and
Lamport algorithm) only when doing so would not violate the invariants
of the “basic” program (e.g., exactly one marker received per channel per
iteration). Thus, in some sense, it acted as a filter. Perhaps this technique
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can be extended to a wider class of programs.

Some of the other techniques used may also be generally applicable, in
particular, prodding and message numbering. The prodding ensured that
the system would not deadlock, while the numbering was used to distinguish
new rounds of activity from old ones. In addition, the existence of values
larger than those initially in the system was crucial to the proof of eventual
self-stabilization.
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UNITY Proofs of Two Self-Stabilizing
Termination Detection Algorithms

Charles Richter
MCC Software Technology Program
Austin, Texas

Abstract

A self-stabilizing system is a system that, when in a “bad” state, will eventually
place itself in a “good” state, and once in a good state, will not return to a bad
state. In an earlier paper, we give UNITY proofs of Dijkstra’s original three
self-stabilizing systems. In this paper, we present UNITY proofs of the self-sta-
bility of the termination detection algorithms of Gouda and Evangelist. We
assume the reader is familiar with UNITY.

1.0 Self Stabilization

The self-stabilization problem, for a program F, may be stated as:

F stabilizes-to g =
stable g in F A
true — g in F

where g is some state formula of F. Thus, F stabilizes to a set of states g if g is stable in
F — that is, once in g, F remains in g — and if each state leads to g in F. The two
properties, stable g and true — g, are the safety and progress properties, respectively, of
self-stability.

Gouda and Evangelist described a family of self-stabilizing termination detection algo-
rithms, and gave examples of two such algorithms [3]. These algorithms assume a logical
ring of N processes, P.0 through P.N-1. In each algorithm, P.i may examine only its own
state and that of its left neighbor, P.i-1 (mod N). In other words, in each of the systems,
any process P.i must alter its own state based only on that state and the state of its left
neighbor.

We give the two algorithms given in [3] and proofs of their self-stability using UNITY
[1].  For the UNITY formulations, we ignore the notion of process altogether, dealing
simply with the changes to vectors of state variables. Note that we subscript the values of
state variables using a “dot rotation,” with a blank terminating the subscript. For exam-
ple, if s is a vector, then s.i refers to the i-th element of the vector, s.i+1 is the (i+1)’st
element of s, and s.i + 1 is the result of adding 1 to the value of s.i. Also, where
appropriate, modulo arithmetic is assumed.

2.0 The Slow Convergence, Fast Response System

In the first algorithm, GE1, each process has two states, s and V. The values for s are idle
and busy, while v ranges from 0 to N-1. The program for GE1 is:

Note: This paper was also released as MCC technical report STP-230-89.






Program GE1

assign
5.0, v.0 := idle, (v.0 + 1) mod N if 5.0 = busy A v.0 = v.N-1
[ s.0 := busy if 5.0 = idle A s.N-1 = busy
[ s.0 := busy if 5.0 = idle A v.0 = v.N-1
D <[ i: 0<i<N-1: s.i, v.i := idle, v.i-1 if s.i = busy >
0 <[ i: 0<i<N-1:: s.i:= busy if s.i = idle A s.i-1 = busy >
D <[ i: 0<i<N-1:: s.i, v.i := idle, v.i-1 if s.i =idle A v.i # v.i-1 >

Intuitively, the propagation of a value from v.0 through v.N-1 represents the circulation of
a token around the ring of processes. The token is used to detect termination: if v.0 =
v.N-1, the token has traveled once around the ring, and if v.N-1 becomes equal to v.0
while s.0 = idle, then termination has occurred i.e., all s.i = idle and v.i = v.0, for
0<i<N-1), and a new job may be initiated. The first transition in GE1 initiates token
circulation, while the third transition detects termination and initiates a new job.

If we allow GE1 to start in a random state, however, the above may not be true. For
example, we could have v.N-1 = v.0 and s.0 = idle (indicating termination has occurred),
yet s.i = busy for some i, 0<i<N-1 (indicating that termination has not occurred). There-
fore, we will partition the system into “good states” and “bad states;” a good state in any
state in GE1 from which, if GE1 reaches a state where v.0 = v.N-1 and s.0 = idle, then all
s.i=idle and v.i = v.0, for 0<i<N-1. Put another way, if GE1, once in a good state,
subsequently detects termination, then termination has actually occurred.

We now define the set of good states for GE1. They are:
g = <am: 0<m<N:: g.m>,
where:
gm = (5.0 = idle A <vi: 0<i<m:: s.i = idle A v.i = v.0>
A <vi: m<i<N:: v.i = (v.0 = 1) mod N>)

v (5.0 = busy A <vi: 0<i<m:: v.i = v.0> A <vi: m<i<N:: v.i = (v.0 = 1) mod N>),
for 0<m<N.

Tt is obvious that, if GE1 is in state g while v.0 = v.N-1 and s.0 = busy, then termination
has actually occurred. It remains to prove that GE1 stabilizes-to g; that is:

stable g in GE1 , shown in section 2.2
A true — g in GE1 , shown in section 2.3.
2.1 Properties of GEI

For notational convenience, we employ the following abbreviations in the proofs of GE1.
Define q.i, for 0<i<N-1, to hold iff the values of all v.0 through v.i are equal. Define
p.i, for 0<i<N-1, to hold iff q.i holds and the values of all v.j for j>i differ from the value
of v.i. That is:

q.i = <vj: 0<j<iz: v.0 = v.j>
p.i = q.i A <v): i<j<N-1:: v.0 5 v.j>

We first list some properties which can be proved directly from the program code for
GE1. We will use the numbered properties in later proofs. These properties are:

g.N-1 unless g.0 : (GE1.1)
g.i unless g.i+1 , for 0<i<N-2 (GE1.2)
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v.i s k unless v.ii £k A v.ii-1 =k , for O<i<N GE1.3
v.0 = k unless v.0 =k Av.N-1 =k GE1.4g
v.0 = k unless v.0 = k+1 GE1.5)
v.i = k unless v.i-1 # k, , for 0<i<N GE1.6)
vis#k Avi-1=k unless vii-1 £k vv.i =k GE1.7)

v.0 = k A <3i: O<i<N-1:: vii = k> =
<3k: 0<k<N:: <vi: 0<i<N:: v.i  k>> (GE1.8)

To see that GE1.1 holds, observe that if g.N-1 holds, then either the first or the third
statement will be executed; if the first is executed, g.N-1 will still hold, while after the
third is executed, g.0 will hold. GE1.2 holds because, if g.i-1 (for 0<i<N-1) holds before
the second or fifth statement, g.i-1 will hold after that statement, while if g.i-1 is true
before the fourth or sixth statement, g.i will hold afterward. Note that GE1.8 follows
from the fact that the number of values for v.i is N, the number of processes. We can
now derive other properties from the above using the theorems and definitions of UNITY:

v.i 5% k A v.i-1 = k ensures v.i = k v v.i-1 5 k, for 0<i<N (GE1.9)
, from GE1.7 and program text
<vi: O<i<N:: v.i £ k> unless v.0 = k (GE1.10)

, from the conjunction of GE1.3 for all i, 0<i<N
V.0 =K AVN-1#KkA..AV.i+2 £k unless v.0 = k A v.N-1 £ k

Ao AVIi+2 #F Kk AVIi+H] = k (GE1.11)
, from the conjunction of GE1.3 and GE1.4
vO=v.l=..=vi=kunlessv0=v.l=..=vi=vN-1=k (GE1.12)
, from the conjunction of GE1.6 and GE1.4
vO=vl=..=vi=KkAVN-1#KkA..AVi+2 2k unless v.0 =v.1 = ...
=vi=vitl =K AVN-1#kA..Avis2 2k (GE1.13)
, from the conjunction of the GE1.11 and GE1.12
p.i = p.i+l , for 0<i<N-2 (GE1.14)
, GE1.13, GE1.9 (v.ii+1 # k AV.i =k — v.i+1 = k v v.i ## k), and PSP
v.0 =v.l = ... =v.i =k unless v.0 = k+1 (GE1.15)
, from the conjunction of GE1.5, GE1.6
vi # k A v.i-1 =K ensures v.ii-1 #k vv.i = k (GE1.16)
, from GE1.7 and program text
v.0 = k A q.i ensures v.0 = k+1 v q.i+1 (GE1.17)

, from PSP applied to GE1.15 and GE1.16
<vi: 0<i<N-1:: v.i = k> ensures v.0 = k+1 A <vi: 1<i<N-1:: v.i = k> (GE1.18)
, from GE1.10 (v.0 will change first) and program text.

The actual derivations of properties GE1.10, GE1.11, and GE1.12 are shown below. The
derivation of GE1.15 is similar to that of GE1.12. GE1.10 is derived from GE1.3 as
follows:

VI#kAv2#kunless(v1#KkAV2#KkAVI=k) v (v2#kAV.I£kAV.0=Kk)
VvV.0O=kAvls#kAavl=kav2#k)
, from the conjunction of GE1.3 and for i=1 and i=2
v.l #k Av.2 2Kk unless v.0 = k
, removing false terms and consequence weakening
v.1#KkAV.2 #k AVv.3 #Kk unless v.0 = k
, from the conjunction of the above and GE1.3 for i=3, simplifying the
right-hand side.

Repeated applications of the conjunction rule with GE1.3 will generate property GE1.10.
The derivation of GE1.11 is:

v.0 =k AVv.N-1 Kk unless v.0 =k A vN-1 £k A v.N-2 = k Fe
, from conjunction of GE1.4 and GE1.3 for i=N-1, omitting false terms
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v.0 =k AV.N-12k AVN-2 2k unless v.0 =k Av.N-1 £k Av.N-2 £k AV.N-3 =Kk
, from conjunction of the above and GE1.3 for i=N-2
v.0 = k A v.N-1 5% k A V.N-2 5 k A v.N=-3 5 Kk unless
vO0=kAVN-1#Kk AVN-2 £k AVN-3 2k AvN-4 =k
, from conjunction of the above and GE1.3 for i=N-3.

Repeated applications of the conjunction rule using GE1.3 will generate property GE1.11.
The derivation of GE1.12 is:

v.1 =k unless v.0 # k

, from property GE1.6
v.2 = k unless v.1 % k

, from property GE1.6
v.l1 =k Av.2 = k unless v.0 # k

, from the conjunction of the above two, plus consequence weakening
v.3 = k unless v.2 # k

, from property GE1.6
vil=kAv2=kAv.3=Kkunless v.0 Kk

, from the conjunction of the above two, plus consequence weakening
v.l =...=v.i=k unless v.0 #k

, from the conjunction of GE1.6 for 1 through i

v.0 = k unless v.0 =k Av.N-1 =k
, property GE1.4
vO=v.l=..=vi=kunlssv0O=v.l=..=vi=vN-1=k

, from the conjunction of the above two
2.2 Safety Proof of GEI

We now prove the essential safety property of GE1, that g is stable. The proof that stable
g in GE1 is:
g.i unless g.i+1 , for 0<i<N-1 (assuming addition modulo N)
, from the simple disjunction of GE1.1 and GE1.2
<3i: 0<i<N-1:: g.i> unless <vi: 0<i<N-1:: -g.i v g.i+1> A <3i: 0<i<N-1:: g.i>
, from general disjunction for unless applied to the above
<3i: 0<i<N-1:: g.i> unless false
, from the definition of g
g unless false
, because <3i: 0<i<N-1:: g.i> = g, from the definition of g.

Hence, stable g in GE1. Note that <vi: 0<i<N-1:: -g.i v g.i+1> A <3i: 0<i<N-1: g.i>
must be false, because g.i can hold for at most one i, 0<i<N-1. <ai: 0<i<N-1: g.i>
states that g.i holds for at least one i, and <vi: 0<i<N-1:: -g.i v g.i+1> states that if g.i
holds, then g.i+1 also holds.

2.2 Progress Proof of GEI

The progress proof obligation for GE1 is to show that true — g. The proof that true — g in
GE1 is:

true —» q.N-1v g
, proved below
gN-1—¢g
, proved below
true — g
, from cancellation applied to the above two properties.



The first assertion merely states that, from any state, GE1 will reach a state at which
either all the v.i values, for i between 0 and N-1, will be the same, or else g holds. The
second property asserts that, once GE1 has reached the state just described, it will eventu-
ally reach a state at which g holds.

The proof of the second intermediate result, q.N-1 g, is:

q.N-1 = <vi: 0<i<N-1:: v.i = k>
, from some k, by the definition of q
<vi: 0<i<N-1:: v.i = k> = v.0 = k+1 A <vi: 1<i<N-1:: v.i = k>
, from GE1.18
V.0 = k+1 A <vi: I<i<N-1::vii=k> =g
, from the definition of g
q.N-1 g
, from the above, the implication rule, and the transitivity of .

The proof of the first intermediate result, true — q.N-1 v g, is:

true = v.0 = k A (<vi: 0<i<N-1:: v.i 5 k> v <3i: O<i<N-1:: v.i = k>)
, for some k, 0<k<N-1

true — v.0 = k A (<vi: 0<i<N-1:: v.i 5 k> v <3i: O<i<N-1:: v.i = k>)
, from the implication rule for —

v.0 = k A <vi: O<i<N-1:: vii 32 k>~ q.N-1 v g
, Shown below

v.0 = k A <3i: O<i<N-1:: vii=k>—~qN-1vg
, shown below

true » q.N-1v g
, from the cancellation rule for .

We now have two new intermediate results to show. The proof that the first, v.0 = k A
<vi: 0<i<N-1:: v.i 2 k> = q.N-1 v g, is:

v.0 = k A <vi: 0<i<N-1:: v.i 5 k> — <vi: O<i<N-1:: v.i # k>
, from the implication rule for —

<vi: O<i<N-1:: v.i 3 v.0> = q.N-1 v g
, Shown below

v.0 = k A <vi: O<i<N-1:: vii# k>~ qN-1v g
, from the transitivity of .

We now prove the second intermediate result from above, v.0 = k A <3i: 0<i<N-1:: v.i =
k> q.N-1 v g. Note that, while proving this, we will also prove the intermediate result
just introduced, <vi: 0<i<N-1:: v.i 3 v.0> — q.N-1 v g. The proof that v.0 = k A <3i:
0<i<N-1:: vii = k> = q.N-1 v g is:

v.0 = k A <3i: 0<i<N-1:: v.i = k> = <vi: O<i<N-1:: v.i % v.0> v q.N-1
, Shown below

<vi: 0<i<N-1:: v.i %2 v.0> — q.N-1v g
, Shown below

v.0 =k A <3i: O<i<N-1::vi=k>—qN-1vg
, from the cancellation rule for .

Again, we have new intermediate results to prove. We will first prove the second one,
<vi: 0<i<N-1:: v.i ¢ v.0> = q.N-1 v g. The proof is by induction: the value of v.0 will
be propagated first to v.1, then to v.2, and so on, while v.0 remains unchanged. Define M
to be a vector of N bits, b.0 through b.N-1, where:

b.0 = 0, and
b.i = 1 iff v.i 2 v.0 , for O<i<N.
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Let the orderings among values of M be lexicographic, but such that b.0 is the high-order
bit. The values of M obviously form a well-founded set. The proof that <vi: 0<i<N-1::
v.i # v.0> — q.N-1 v g is:

<vi: O<i<N-1:: v.i 5 v.0> = p.0
, from the definition of p
p.i = p.i+l , for 0<i<N-1
, from GE1.14
p.i A M=m - p.i+1 A M<m
, from the definition of M
<3i: 0<i<N-2:: p.i> A M=m (<3i: 0<i<N-1:: p.i> A M<m) v g
, rewriting the above
M=0 = p.N-l = q.N-l
, from the definitions of M, p
<3i: 0<i<N-2:: p.i> =~ q.N-1v g
, from the induction rule for —
<vi: O<i<N-1:: v.i %2 v.0>—»qN-1v g
, from the transitivity of ~.

We now prove the first intermediate result above, that v.0 = k A <3i: O<i<N-1:: v.ii= k> =
<vi: 0<i<N-1:: v.i % v.0> v q.N-1. Again, we will use an inductive argument, employing
the fact (shown below) that v.0 will eventually be incremented, and thus will eventually
reach a value to which no other v.i’s are equal. Define a metric D to be the difference
between the current value of v.0 and the “next higher” possible value j such that <vi:
0<i<N:: v.i # j>. (Property GE1.8 assures us of such a j, and GE1.10 guarantees <vi:
0<i<N:: v.i 3 j> until v.0 = j.) Thatis, D is defined as:

D = minimum {(j - v.0) mod N, for j such that <vi: 0<i<N:: v.i # j>}.

(There may be several such j; we want the smallest one greater, mod N, than v.0’s
value.) Proof that v.0 = k A <3i: 0<i<N-1:: v.i = k> — <vi: 0<i<N-1:: v.i # v.0> v q.N-1:

v.0 =k — v.0 = k+1 v q.N-1
, shown below
v.0 = k AD=d — (v.0 = k+1 A D<d) v q.N-1
, from the definition of D
<vk: 0<k<N:: v.0 = k> A D=d ~ (<vk: 0<k<N:: v.0 = k> A D<d) v q.N-1
, rewriting the above
D=0 = v.0 = j
, from the definition of D
<vk: 0<k<N:: v.0 = k>~ v.0 = j v q.N-1
, from the induction rule for —
<vi: 0<i<N:: v.i 5% j> unless v.0 = j A <vi: O<i<N:: v.i # >
, property GE1.18
<ark: 0<k<N:: v.0 = k> = (v.0 = j A <vi: O<i<N:: v.i # i») v q.N-1
, from PSP applied to the above two properties
v.0 = k A <3i: 0<i<N-1:: v.i = k> s <vi: 0<i<N-1:: v.i 5 v.0> v q.N-1
, rewriting the above.

We must now show that v.0 = k — v.0 = k+1 v q.N-1. Once again, we must employ an
inductive proof. This time, we use induction to show that the value k will eventually be
propagated to every v.i, after which v.0 must change. (Of course, v.0 can change when-
ever v.N-1 = v.0; k need not be propagated to all v.i’s.) Let M be as defined before, a
vector of N bits, b.0 through b.N-1, where:

= 0, and
i=1iff vii 2 v.0 , for O<i<N.
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Let 0<k<K. Proof that v.0 = k ~ v.0 = k+1 v q.N-1:

v.0 =k A Qi — q.i+1 v v.0 = k+1
, property GE1.17
v.0 =k A q.i AM=m ~ (q.i+1 A M<m) v v.0 = k+1
, from the definition of M
v.0 = k A <3i: 0<i<N-1:: q.i> A M=m
(v.0 = k A <3i: 0<i<N-1:: q.i> A M<m) v v.0 = k+1
, rewriting the above
M=0 = QN—I
, from the definition of M
v.0 = k A <3i: 0<i<N-1:: q.i> = (@.N-1 A v.0 = k) v v.0 = k+1
, from the induction rule for —
v.0 = k A <3i: 0<i<N-i:: q.i> » q.N-1 v v.0 = k+1
, from consequence weakening.

This completes the progress proof for GE1.

3.0 The Fast Convergence, Slow Response System

The second algorithm, GE2, is similar to GE1. GE2, however, includes an additional
variable, z, indicating the number of times the token has circulated around the ring.
Termination is not detected until the token has circulated through the ring N times. The
program for GE2 is:

Program GE2
assign
.0, v.0, z := idle, (v.0 + 1) mod 2, 0 if 5.0 = busy A v.0 = v.N-1

0 v.0, z:= (v.0 + 1) mod 2, z+1 if 5.0 = idle A v.0 = v.N-1
AZ < N-1

J s.0 := busy if 5.0 = idle A s.N-1 = busy

[ s.0 := busy if s.0 = idle A v.0 = v.N-1
Az =N-1

0 <[ i: O<i<N-1:: s.i, v.i := idle, v.i-1 if s.i = busy >

0 <[ i O<i<N-1:: s.i := busy if s.i = idle A s.i-1 = busy >

0 <[i: 0<i<N-1:: v.i:= v.i-1 if s.i =idle A v.i 3£ v.i-1 >

The good states for GE2 are:
g = <am: 0<m<N:: g.m>,

where:
8.0 =5.0 = busy v (5.0 = idle A 5.1 =busy A [v.0 #v.N-1 AK < (N - 2.0 - 1)])

g-m = <vi: 0<i<m:: s.i = idle> A s.m+1 = busy
A([v.0=vN-1AK<(N-2z0-1)] v[v.0 #vN-1 AK < (N -z.0-1)])
,for 0<m<N-1, and

g.N-1 = <vi: 0<i<N-1:: s.i = idle>,
and where K is the number of k’s such that m<k<N-1 and v.k ¢ v.k+1.
3.1 Properties of GE2

For notational convenience, define p.i, for 0<i<N-1, to hold if and only if all 5.0 through
s.i are idle. That is,



p.i = <vj: 0<j<i:: s.j = idle> , for 0<i<N-1.
The following properties of GE2 are obvious from program text:

g.0 unless <3i: 0<i<N-1:: g.i> GE2.1)
g.N-1 unless g.0 GE2.2)
g.i unless g.0 v <3j: i<j<N-1:: g.j> , for 1<i<N-2 GE2.3)
s.0 = idle unless s.0 = busy GE2.4)
s.i = idle unless s.i-1 $ idle , for 1<i<N-1 GE2.5)

GE2.1 holds because g.0 must hold before the first statement is executed (because s.0 =
busy); after it is executed, g.i, for some i, 0<i<N-1, will hold. Property GE2.2 holds
because g.N-1 holds and therefore all s.i’s are idle, and so the only change which could
invalidate g.N-1 is if s.0 becomes busy. GE2.3 holds because, if g.i holds (for
1<i<N-2), then after the third or fourth statement is executed, g.0 will hold, while after
the fifth statement is executed, g.j will hold for j=i, and after the second, sixth, or sev-
enth statement is executed, g.i will still hold.

The following properties can be derived from the above:

p.i unless p.i+1 v 5.0 = busy (GE2.6)
. from disjunction of GE2.4 and GE2.5
p.i ensures p.i+1 v 5.0 = busy (GE2.7)

, from GE2.6 and program text.
Note that the actual derivation of GE2.6 is similar to that for GE1.15, given in section 2.1.

3.2 Safety Proof of GE2

We now prove that g is stable in GE2. Properties GE2.1, GE2.2, and GE2.3 tell us that if
g.i holds for some i, 0<i<N-1, then it will continue to hold until g.j holds for some j,
0<j<N-1, and so, intuitively, g is stable. We can derive stable g in GE2 formally from
GE2.1, GE2.2, and GE2.3 as follows:

g.0 unless <ai: ix0:: g.i>
, property GE2.1
g.N-1 unless <3i: i#N-1:: g.i>
, from consequence weakening and GE2.2

g.i unless <3j: j#i: g.j> Jfor 1<i<N-2
, from consequence weakening and GE2.3
g.i unless <3j: j#i:: g.j> for 0<i<N-1

, from simple disjunction of the above
<3i: 0<i<N-1:: g.i> unless
<vi: 0<i<N-1:: -g.i v <3j: 0<j<N-1 A j&is: g.j>> A <30 0<i<N-1:: g.i>
, from general disjunction for unless applied to the above
<3i: 0<i<N-1:: g.i> unless false
, from the definition of g
g unless false
, because <3i: 0<i<N-1:: g.i> = g, from the definition of g.

Therefore, g unless false in GE2; that is, stable g in GE2. Note that an explanation
analogous to that at the end of section 2.2 shows why <vi: 0<i<N-1:: -g.l1 v <3J: 0<j<N-1
A jsic g.j>> A <3i: 0<i<N-1:: g.i> is false.

3.3 Progress Proof of GE2

We now show that true — g in GE2. We first sketch the proof informally; we then derive
it formally. Either s.0 = busy or s.0 = idle. If 5.0 = busy, g holds by definition. If 5.0 =
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idle, then either idle will be propagated to all s.i, or else s.0 will become idle. In either
case, g holds.

The proof that true — g in GE2 is:

true — 5.0 = busy v 5.0 = idle
, from the implication rule for

5.0 = busy — g

, from the implication rule for
s.0 =idle » g

, Shown below
true — g

, from the cancellation rule for .

We now show the intermediate result, that s.0 = idle g. To do this, we use an inductive
proof to show that (if g doesn't hold first) idle is propagated up through s.N-1. For the
induction, we use metric function M whose value is defined to be a vector of bits b.0
through b.N-1, where each bit is defined as follows:

b.i = 1 iff s.i = busy , for 0<i<N-1.

Let the orderings among values of M be lexicographic, but such that b.0 is the high-order
bit. (That is, for m1, mp € M, m{ >mg2 if b.0 = 1 in my while b.0 = 0 in m3.) The values
of M obviously form a well-founded set. The proof that 5.0 = idle g is:

.0 = idle = <3i: 0<i<N-1:: p.i>
, from the definition of p
5.0 = idle — <3i: 0<i<N-1:: p.i>
, from the implication rule for —
<3i: 0<i<N-1:: p.i> A M=m w (<3i: 0<i<N-1:: p.i> A M<m) v g
, from GE2.7, the definition of M, and M=0 = p.N-1 = g
<3i: 0<i<N-1: pi>+— g
, from the induction rule for —
5.0 = idle ~ g
, from the transitivity of .

This completes the progress proof for GE2.

Remarks

When they presented these two termination detection algorithms, Gouda and Evangelist
identified the rate at which each algorithm converges to a safe state and the kinds of
transitions that must be executed during that convergence [3]. We ignore those aspects
here, concentrating instead on the proofs of self-stability.

In related work, the self-stability of Dijkstra’s original three systems [2] are proved using
UNITY in [4]. An interesting proof (again using UNITY) of the self-stability of Hopfield
nets is given in [5].

References

[1] M. Chandy and J. Misra, Parallel Program Design: A Foundation, Addison-Wesley,
1988.

[2] E. Dijkstra, “Self-Stabilizing Systems in Spite of Distributed Control,” Communica-
tions of the ACM, Volume 17, Number 11, November 1974, pp. 643-4.

=D a



[3] M. Gouda and M. Evangelist, “Convergence/Response Tradeoffs in Concurrent Sys-
tems,” MCC Technical Report STP-124-89, submitted to Transactions on Programming
Languages and Systems.

[4] C. Richter, “Proofs of Some Self-Stabilizing Systems,” MCC Technical Report
STP-212-89.

[5S] N. Soparkar, “Hopfield Nets — More Formally,” Department of Computer Sciences
Technical Report TR-88-38, University of Texas at Austin, October 1988.

- 10 -



Appendix A: Alternative Safety Proofs for GE1 and GE2

In the safety proofs for GE1 and GE2, we used the general disjunction rule for unless.
This rule was discovered after the publication of [1] and so is not included in that book.
Here we give safety proofs using only rules included in [1].

The essential safety property of GE1, that stable g in GE1, is proved using only properties
GE1.1 and GE 1.2. One straightforward derivation of g unless false is:

g.0 v g.1 unless g.2

, from the disjunction of g.0 unless g.1 and g.1 unless g.2
2.0 vg.lvg.2unless g.3

, from the disjunction of the above and g.2 unless g.3
g.0 vg.lv..vgN-2unless gN-1_

, from the disjunction of all g.i unless g.i+1, for 0<i<N-2
g.0 vg.lv..vgN-2vgN-1 unless false

, from the disjunction of the above and g.N-1 unless g.0
g unless false

, from the above and g =g.0 vg.1 v.. v g N-2 v g.N-1.

Proof that stable g in GE2:

g.N-2 unless g.0 v g.N-2 v g.N-1

, from GE2.3
g-N-2 A ~(g.0 v g.N-1) unless g.0 v g.N-2 v g.N-1

, from the above
g.N-2 unless -g.N-2

, from the anti-reflexivity rule for unless
g.N-2 unless g.0 v g.N-1

, from disjunction of the above two properties
g.N-1 unless -g.N-1 A g.0

, from consequence weakening of GE2.2
g.N-1 v g.N-2 unless g.0

, from simple disjunction of the above two
g.N-3 unless g.0 v g.N-1 v g.N-2

, from property GE2.3
g.-N-1 v g.N-2 unless -(g.N-1 v g.N-2) A g.0

, from consequence weakening of an above property
g.N-1 v g.N-2 v g.N-3 unless g.0

, from simple disjunction of the above two
g.N-1 v gN-2 v .. vg.l unless g.0

, from repeaied applications of the above rules
8.0 A-(g.1v..vgN-1) unless g.0 v g.1 v ... v g.N-1

, from property GE2.1
g.0 unless -g.0

, from the anti-reflexivity rule for unless
g.0 unless g.1 vg.2 v...vgN-1

, from disjunction of the above two
g.N-1vgN-2v..vg.lvg.0 unless false

, from disjunction of above and g.N-1 v g.N-2 v ... v g.1 unless g.0
g unless false

, because g = g.N-1 v gN-2v..vglvg.0.

Lo iy P



Appendix B: UNITY Definitions and Theorems

We now list the UNITY definitions and theorems used in this paper. These concepts are
explained in more detail in [1]. The relevant definitions, where F is a program and s is a
program statement, are:

punlessqinF = <vs:sinF: {paAa-q} s {pvqg}>
pensuresqinF = (punlessqAa<as:sinF:{pa-q} s {q}>)

p ~ q holds in F iff p — q can be derived by a finite number of applications of the
following rules:

P ensures q

p—q
p—r, r—=(

(the transitivity rule)
p—q
<ym: meW :: p(m) — q>

(the disjunction rule, for any set W)
<am: meW :: p(m)> — q

The theorems for unless are:
anti-reflexivity:
p unless -p
consequence weakening:
punlessq, q=r

p unless r
conjunction:
p1 unless q1, p2 unless q2

p1 A p2 unless (p1 A q2) v (P2 A q1)V (q1 A G2)
disjunction:
p1 unless q1, p2 unless q2

p1 v pe unless (-p1 A q2) v (-p2 A Q1)V (41 A G2)
simple disjunction:
p1 unless qq1, p2 unless q2

p1 Vv p2 unless q1 v q2
general disjunction:
<vi:: p.i unless q.i>

, for sets of predicates p, q
<3i::p.i> unless <vi:: -p.i v q.i> A <30t q.I>

D



The theorems for ~ (aside from transitivity, given above) are:

implication:

P=q

P—q
cancellation:

P—qvb, brr

p—=qvr
consequence weakening:
P—Qq, q=r

Per

induction:
<vm: meM:: p A M=m — (p A M<m) v gq>

p—q
PSP (Progress-Safety-Progress):
p—q, runlessb

PAr—=(QAT) VDb

i m

, for any well-founded set W
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Abstract

In verifying concurrent systems, it is frequently convenient to assume that any oper-
ations that might occur concurrently are actually executed in some serial order. We
show that for some systems this (sometimes unrealistic) assumption is unnecessary and
simultaneous actions can be allowed without affecting correctness.

In 1974, Dijkstra presented the problem of self-stabilization and gave three solu-
tions. In the two solutions using only a constant number of states per processor,
Dijkstra only claimed correctness under the condition that simultaneous actions were
prohibited. Several other authors have presented solutions that do not require this
condition, but, until now, apparently no one has noticed that Dijkstra’s solutions are
correct even without the condition. The techniques developed in this paper allow us
easily to extend the correctness of Dijkstra’s solutions to the case where simultaneous
actions are allowed. ;
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1 Introduction

Whenever we design a solution to a problem, we prefer to make the weakest assumptions
possible about the environment in which it operates, so that the correctness of our
solution is as robust as possible. In concurrent systems, it is common to assume that
all computations can be described as a serial ordering (interleaving) of elementary
operations. This is a reasonable assumption in many cases, but it is clearly not as
weak as possible. In this paper we consider concurrent systems in which elementary
operations can take place simultaneously. By “simultaneous,” we mean the synchronous
execution of two or more actions, rather than an arbitrary overlapping of actions.
The main question of interest is whether computations of the “parallel” system are
essentially different from those of the serial system (which is presumed to be correct).
Our main results give conditions under which certain important properties of concurrent
systems hold for parallel systems if they hold for the corresponding serial systems. This
will often provide simpler proofs for parallel systems by allowing us to reason about
the simpler serial systems.

Almost all previous work on concurrent systems is based on models that in-
volve interleaving elementary operations. For example, in the theory of concurrent
databases [Pap86}, the concurrent execution of transactions is modeled by considering
each transaction as a sequence of elementary, atomic operations. These elementary
operations are then interleaved to represent overlapping transactions. Note that the
elementary operations themselves are assumed to be executed in some particular or-
der and not to occur simultaneously (or, equivalently, simultaneous operations have
the same effect as executions of the operations in some order). Similarly, in Petri net
theory [Pet81], simultaneous actions (firings) are allowed only if their actions to not

interfere, so that simultaneous firings are equivalent to firing the actions in any order.
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(In fact, prohibiting firings that interfere with one another is a major feature of Petri
nets.)

To illustrate how our definition differs from standard models based on interleaving,
consider the following example. Suppose a system has three processors, P,, P, P, and

three variables, Vg, V1, V5. Each processor P; has a single atomic operation:
Vi « .Vi—l(mod 3) + Vi+ ‘Vi+1 (mod 3)

We want to allow simultaneous execution of two such transitions. For example, from a
configuration (0,1,2) (representing (V,V},V2)), let both Py and P; execute simulta-
neously. The resulting configuration should be (3,3,2). This is impossible to achieve
by executing transitions by P, and P; in either possible interleaved order. We could
achieve the effect by using more primitive atomic operations, say by defining P; as
follows, where L; is a local variable and loc; is a location counter (necessary for locally

sequential operations):

if loc; =0 then Ly < Vi_j(mod3)+ Vit1(mod3); loci—1f

if loc;=1thenV, « V,+L; loc «~0fi

The desired effect is then obtained by interleaving steps in the order Py, Py, Py, P;
(where the location counters are initially zero). Unfortunately, we also get undesired
effects (computations that could not occur in the original system). For example, exe-
cuting steps in the order: Py, Py, Py, P, P, P, gives a result of (3,3,6), which is not a
reachable configuration in the original system.

One place where simultaneous actions have been explicitly considered is the case of
concurrent-read, concurrent-write parallel random access machines [FRW84]. However,
the assumption normally made with this model are usually equivalent to assuming that

the simultaneous actions occur in some interleaved order. We are interested in cases
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where this does not hold.

Lamport [Lam84] has considered systems where operations can overlap in more
complex ways than we consider here. In particular, operations effectively take place
over intervals, so that, for example, one operation could overlap two others that do not
overlap each other. This possibility is not allowed in the model that we are considering,
since we take operations to be atomic (effectively instantaneous). We take advantage
of this restriction to obtain simple ways of showing that parallel computations in our
model are equivalent to serial ones.

Section 2 gives our definitions for serial and parallel semantics of concurrent sys-
tems. Section 3 presents our main results regarding reachability. Section 4 applies our

results to Dijkstra’s self-stabilization protocols.

92 Serial and Parallel System Semantics

A concurrent system S = (P, V) consists of a finite set of processors P = { Poy Prjrass
P,} and a finite set of variables V = {Vo,V4,...,Vim}. (Throughout the paper, 5, P
and V will be used as described here.) The configurations of S constitute the set
T =V x V; X +++ X Vp, where the V; here stand (ambiguously) for the set of values
taken on by the variables. Let v = (vo,v1,.. .,Um) be a configuration of S. Then for
any V; € V, the value of V; at v is Vj(v) = v;.

Each system has an associated transition relation, —, which is a subset of I" x I'.
The particular form of — depends on the semantics of the system, which we do not
want to restrict except as follows. Every transition y— ' (called a step of S ) has an
associated nonempty set of processors, « C P. We denote this association by v = 7.

It is possible that another processor set o' # a could be associated with the same
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transition (so that 73'»7’) and that a could also be associated with a step to some
7" # v (so that v 51"). If a is a singleton set, say a = {i}, we write v = 4 and call
this transition a serial step of S. (A step by multiple processors could be called a
parallel step, and a step by all processors together could be called a synchronous step.)

A computation of S from 7, € I is a finite or infinite sequence C = (v, 11, .. .)
of configurations in I' such that y;_; — ; for all integers 7, 0 < 1 < Ieﬂgth(C).1 A
computation is serial if every step in the computation is serial. A computation is
maximal if it is infinite or it is finite and the final configuration no possible step
leading from it.

For some of our results, we require more structure on the form of a system. A
system S = (P, V) without multi-writer variables has the following special charac-
teristics:

1. Each processor P; € P has an assoc1ated set of irreflexive partial functions .4;

called actions from I' to . If v = ' is a step then (v,7') € a for some a € A;.
Since actions are functions, we can write P?(y) = 7' in this case.

2. V is partitioned into Owngy, Owny,...,Own, such that if 7i>7' and V;(v) #
V;(7') then V; € Own,. Let Own;[y] denote the projection of v onto the variables
in Own,. ;

3. Let & C P. Then v—=+ if and only if for every 1 € a there is a 7; such that

v = 7; and Own;[y'] = Own;[v;], and for every j € V —U;caOwn;, V, ()= V().

(1) means that every serial step can be attributed to some particular action by a
processor. (2) requires that no variable can be changed by two distinct processors. (3)
defines the system transition relation so that if several processors move together in the

same step, they all change their own variables as if they had moved alone. This is

'If C is finite then length(C) is just the number of elements in C. If C is infinite then length(C)
stands for a value, often denoted by w, greater than all integers.
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unambiguous because there are no multi-writer variables.

The correctness of a concurrent system is determined by its behavior over a set of
computations. Usually, these computations are determined by an initial configuration
or set of configurations, by whether computations are serial or not, and perhaps by some
additional criteria (such as fairness). For our purposes, we will say a system is serial-
correct if it is correct for those serial computations that are allowed by the problem
specification. On the other hand, a system that is correct when the computations are
extended to allow simultaneous actions is parallel-correct. The next section provides

some tools for showing when a serial-correct system is also parallel-correct.

A

3 Lemmas on Reachability and Eventuality

A computation from v to ~' is a finite computation with initial configuration v and
final configuration v'. A configuration ~' is (serially) reachable from configuration 7
if there is a (serial) computation from v to ~'. For any 7o € 7, define parallel(7o) to be
the subset of T that is reachable from vo. We define serial(7o) analogously for serial
reachability.

Reachability is often called a safety property. Another kind of property of interest
is a progress property. Let A be a subset of ' and 7o € I'. We say S makes progress
toward A from 7 if every maximal computation from 7o contains an element of A,
in which case eventually(A,~o) holds. The analogous predicate for serial progress is
serial-eventually(A, o).

In order to show that the desired condition (serial-eventually) is obtained, we need
another property of the set A C T'. We say A is (serially) closed if whenever v € A

and v — 7' is a (serial) step of S, then v € A.
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Our first lemma is an easy consequence of the definitions.

Lemma 3.1 Let § = (P,V) be a concurrent system, vo € I', and A be a serially
closed subset of T'. If for every step Yy — ' of S there is a serial computation of S
from v to v, then serial(v,) = parallel(v,) and serial-eventually(A,v,) if and only if
eventually(A, vo).
Proof: Since serial computations are also parallel computations, trivially serial(y,) C
parallel(7y,) and eventually(A, ;) implies serial-eventually(A, vo). It is easy to see by
induction on the number of steps that any configuration reachable from v, is also
serially reachable, so parallel(v,) C serial(7yp).

Now suppose eventually(A,~,) does not hold, so there is an infinite computation,
C, from +, that avoids A. Let C' be the corresponding serial computation, formed
(inductively) by chaining together serial computations between the adjacent configura-
tions in C. Since A is serially closed, if C' ever reaches a configuration of A, then all
remaining configurations of C’ are in A, which implies the next occurring configuration

of C is in A. Therefore, (not eventually(A,v,)) implies (not serial-eventually(A, v,)),

or, equivalently, serial-eventually(A,~,) = eventually(A,vy), as required. O

Note that the serial closure condition of the lemma is necessary. For example,
consider a system with processors P, and P;, and binary variables V; and V;. Define

the transitions of Py and P, as follows:

By: Vo — not

P: Vi~ notV
From an initial configuration with V; = 0 and Vi = 1, there is a parallel computation
that cycles forever through the configurations (0,1) and (1,0). Let A be the subset of

I for which V4 = V]. Although the other conditions of the lemma hold, A is not serially

closed, and even though serial-eventually(A,v), it is not true that eventually(A,~).
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Unfortunately, Lemma 3.1 is difficult to apply, since it essentially requires consider-
ation of a possibly infinite set of serial computations. A slightly more restricted version
has simpler application. We say a transition 7 2 +' of S has a linear connection if
there is a serial computation in S from v to 7' consisting of exactly one step by each
processor in a. A concurrent system S is linearly connected if for every transition of
S has a linear connection. In a linearly connected system, serial reachability between
a pair of configurations can be checked by considering only a finite number of finite

serial computations.

Corollary 3.2 Let S=(P,V) bea linearly connected concurrent system, Yo € T, and
A be a serially closed subset of T'. Then serial(vo) = parallel(vo) and serial-eventually(A, 7o)
if and only if eventually(A, o).

Showing a system is linearly connected simplifies proving the properties that we
want, but it could require a lot of work. If the way that processors can affect one
another has a certain structure, then the desired properties are easier to check. One
processor can only be affected by others if they change variables that alter the behavior
of the processor. This notion is formalized (for systems without multi-writer variables)
by the following definitions.

Let S = (P,V) be a concurrent system without multi-writer variables. We need
some preliminary definition in order to define a dependency relation between processors
at a given configuration. Let 7,7 be configurations and P; be a processor. The action
set of P; at v is the set of actions of F; that are defined at 7, which we denote by
Ai(y)- P; is enabled at 7 if its action set at v is not empty. The effect of P; is
different at v and 7' if either A;(7) # Ai(7') or there is some a € Ai(7) such that
Own;[PA(7)] # Ow*n,-[P,-“(*y")]. Thus the effect of a processor is different if some actions

have been added or subtracted from its action set or if the same action produces different
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results.
Now let P;, P, € P be distinct processors. We say P; depends on PoatyeTlif

there are sets a and o' of processors and configurations 7' and 4" such that
p i

e «a contains P, but not P;.

!

o 74,

If a is a singleton set, then v = «; otherwise, 'ygfv 7" where o' = a — {k}.

The effect of P; is different at v/ and ~".

Thus, P; depends on P, if the participation of P in a step can alter the effect of a step
by P;. Of course, we are really more interested in cases where one processor cannot
affect another.

For the next lemma, we introduce a digraph that corresponds to the dependency
relation on the processors at a configuration. Let v be a configuration of a system S
and a be a subset of P. The dependency digraph of a at ¥, Da(7), is the directed

graph with the processors of S as vertices and edge set
{(P:, P;) € a x a: P; # P;, P, is enabled at v, and P; depends on P; at ~}.

If Dp(7) is acyclic we say v is acyclic; otherwise, v is cyclic. If D,(7) is acyclic,
define a root of & at v to be a vertex with in-degree zero in D, (7).

The following preliminary lemma shows that every configuration reachable in one
step from an acyclic configuration is also serially reachable if there are no multi-writer
variables. (Note that the restriction on multi-writer variables is necessary. For example,
consider a s&stem with processors Py, P; and variables V;, V4, and V. Suppose P, has

transition Vi « V;; V3 « V; and P, has transition Vo « V;i. If the initial (acyclic)
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configuration is (0,1,2), a non-serial step can reach (0,0,1), but no serial computation

can.)

Lemma 3.3 Let S = (P,V) be a concurrent system without multi-writer variables
and v be an acyclic configuration in [. If y—~' is a transition of S, then there is a
linear connection from v to v'.

Proof: Let v+ be a transition of S with la| = k, and for each i € a let a; be
the action of processor P; that occurs in the transition. Define 71,72, -+, Vk+1 and

ay,Qs, ..., ks as follows.
o vy =7 and o, = a.

o For1<j<k aj=aj—{P}andvu= P:"’('yj), where P;; is a root of q;
at Yj-
The proof proceeds by induction on j in the range 1 to k+1 with the following induction

hypothesis:

1, :The effect ofic P e o580 { A0 reaching v; is the same as if the processors had

acted in parallel. That is, v = 7;, where o’ = {P,,...,P;_,} and the actions of
the processors in o' are a;;, @iy, -« -5 @i;_;» respectively.

2. D,,(7;) is acyclic, so F;; exists.

Condition (1) holds vacuously for j =1 and condition (2) follows from a premise
of the lemma, so the basis of the induction holds. Suppose the hypothesis holds for
1,2,...,j forsome j,1 < j <k In particular, a; is acyclic and F;; is a root of a; at ;.
Suppose the effect of F;; is different from +; than from . Then there is an Ll <éE<]
such that the effect of F;; is different at 7, and 7,4;. But this would imply that P;;

depends on P; at vy and so P, is not a root of oy at v, contradicting the inductive
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assumption. Therefore, the effect of P;; is the same from v and 7;. Since no variable
is multiple writer, this implies condition (1) holds for j + 1.

We still need to show that D, (7;+1) is acyclic. Using a similar argument to that
in the previous paragraph, it can be seen that the effect of every processor in aj,; is
the same at v;4; as at 4. Thus, D,,,,(7j+1) is just the digraph induced by the vertices

in a;j4; on D,(y). Since D,(7) is acyclic, so is D i) O

Lemma 3.4 Let S = (P,v) be a concurrent system without multi-writer variables,
Yo € I', and A be a serially closed subset of I". If every configuration v € parallel(~,)
is acyclic, then serial(v,) = parallel(v,) and serial-eventually(A,v,) if and only if
eventually(A, o).

Proof: Since every configuration is acyclic, Lemma 3.3 implies that every transition
of S has a linear connection. Thus, S is linearly connected and Corollary 3.2 applies,

giving the result. O

When the last lemma does not apply directly, it is sometimes possible to show
that the property of being acyclic eventually holds. Let Acycs be the set of acyclic
configurations of S. If eventually(Acycs,~o) holds and Acycs is serially closed, then

we can still show that serial eventually and eventually are equivalent for S.

Lemma 3.5 Let S = (P,V) be a concurrent system without multi-writer variables,
Yo € ', and A be a serially closed subset of T". If eventually(Acycs,vy) and Acycy is
closed, then serial-eventually(A, v,) if and only if eventually(A, 7).

Proof: Since eventually(Acycg, 7o), in any infinite computation from +, an acyclic con-
figuration, 7, is eventually reached. Since Acycg is closed, all configurations reachable
from 7 are acyclic. The result then follows from Lemma 3.3 and an argument similar

to that in the proof of Lemma 3.1. O
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4 Applications to Self-Stabilization

Some of the results of the previous section are illustrated here by application to a well-
known problem: self-stabilization. Self-stabilization was originally defined by Dijkstra
in 1974 [Dij74]. For the two solutions that use only a constant number of states per
processor, Dijkstra only claimed his solutions to be serial-correct. Several other authors
have given solutions that are parallel-correct [BGW, Bur87, Tch81], but apparently no
one has noticed before that Dijkstra’s solutions also happen to be parallel-correct, as
we show in this section?. It seems likely that this property would have been observed
before if the results of the previous section were known.

In the self-stabilization problefn for rings, there are n+1 processors, Py, P, . .., Pa,
connected in a ring. Each processor behaves as a finite state machine with transitions
that depend on its own state and those of its two neighbors in the ring. In our model,
variables V, V4, ..., V, are used to hold the states of the processors. There are no other
variables, so, since each processor can only change its own state, the system has no
multi-writer variables, and Lemma 3.4 applies.

A correct solution to the self-stabilization problem requires that a closed, proper
subset A of I, called the legitimate configurations, be given such that there is
only one enabled processor in any enabled configuration. We also require that the
system cannot deadlock (some processor is enabled at every configuration), and that
a fairness condition holds: every processor is enabled infinitely often in any infinite
computation consisting of legitimate configurations. The final required property, which
is the essence of self-stabilization, is that a legitimate configuration will be reached from

any starting configuration within a finite number of steps. Thus, a system satisfying

2Note that some problems do have serial-correct solutions but no parallel-correct solutions; see for
example [BP89].
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the other conditions is serial-correct if for all ¥ € T, serial-eventually(A,~). Parallel
correctness requires that eventually(A,~) holds for all v € I'. We want to show that
serial-eventually(A,v) implies eventually(A,v) for Dijkstra’s solutions, so that serial
correctness implies parallel correctness.

In the next subsections, we present Dijkstra’s solutions in our own notation. In de-
scribing the transition functions, the state of P, is designated by V;. The left neighbor of
P; is Pi_1 (mod n+1) and the right neighbor is P, (mod n+1)- In the following discussions,

recall that the state of P; at configuration 7 is denoted V(7).

4.1 The Three State Solution.

The three state solution is denoted by S3. Each processor can be in one of three states:
0, 1, or 2. The transitions of S3 are given by the following single actions for P, and P,
and by pairs of actions for P;, 0 < i < n. It should be apparent that this is a system
without multi-writer variables since P; only changes V;. (Note: we have transliterated
Dijkstra’s original algorithm, replacing the local state he denoted by ‘S’ by V;, the state
of the left processor ‘L’ by V;_;, and the state of the right processor ;R‘ by Visy1.) The
‘mod’ operator below is a binary operator returning the remainder of the first operand

when divided by the second.
For processor Py:
if (Vo+1) mod 3=V; then Vj « (V, — 1) mod 3 fi

For processor P;, 0 < i < n:
if(Vi+1)mod3=V,_;then V.~ V,_; i
if (Vi+1) mod 3 =V;y, thenV; « Vi, i

For processor P,:
if Vaoi =Vo and (V-1 + 1) mod 3 # V, then V, — (Vaci+1)mod 3 fi

The set of legitimate configurations, A C T, is the set of all configurations such
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that exactly one processor is enabled.

Suppose that v is a cyclic configuration. Since Py can only depend on P; and
the other processors can only depend on their neighbors in the ring, the dependency
graph of « either has an n+1 cycle or a 2-cycle. But since if P, depends on P, it also
depends on P,_;, we only need to consider 2-cycles. Suppose P;_; and P; depend on
one another for some 7, 0 < i < n. (We need not consider i = 0 because Py cannot
depend on P,.) Since P; depends on P;_; at 7, we have (Vi1() + 1) mod 3 # Vi(7)
(this follows directly if i = n or indirectly from (Vi(v) + 1) mod 3 = V;_;(7) otherwise).
But since P;_; also depends on P; at v, we have (Vi_y(y) + 1) mod 3 = Vi(v). These
assertions are mutually contradictory, so there cannot be a 2-cycle in the dependency
graph of v for any v € T.

Since every configuration is acyclic, by Lemma 3.4, if S3 is serial-correct then it is
also parallel-correct. Therefore, a demon is not essential to the correctness of S3, and

Dijkstra’s proof of 53 [Dij86] applies to parallel as well as serial systems.

4.2 The Four State Solution.

The four state solution, S4, has a pair of boolean variables for each processor which
together constitute its state. For P;, we deﬁote these by V; and W;, which correspond
to variables z and up, respectively, in Dijkstra’s original presentation. Wo and W, are
not actually variables. Wy is never referred to and W, is taken to be a constant with
the value ‘false.’ The actions of the processors are given below. Again, this is clearly

a system without multi-writer variables.
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For processor Py:
if Vo = Vi and not W) then V; — not V, fi

For processor P;, 0 < 1 < n:
if V; # Vi_; then V; — not V;; W; «— true fi
if V; = Vi4; and V; and not W;, then V; « false fi

For processor P,:
ifV,#V,_;thenV, «— not V, fi

As in 53, the legitimate configurations are those containing exactly one enabled
Processor.

Since Py and P, cannot depend on one another, if there is any cycle, there must
be a 2-cycle. But, for 0 < i < n, if P; depends on P, at v, then Vi(v) = V;,,, while if
Piy, depends on P; then Vi, # Vi(y), which is impossible. (We need not consider i = n
since P, cannot depend on FP,.) Therefore, there is no 2-cycle in any configurations,
so Lemma 3.4 applies. Once again, serial correctness implies parallel correctness, so a

demon is unnecessary.

4.3 The K State Solution.

The K state solution, SK’, uses states 0, 1, ..., K — 1, and the following transitions.

For processor Py:
ifV,=VthenV, — (Vo +1)mod K fi

For processor P;, 0 < i < n:
ifVi.i#VithenV, «~V,_ fi

As for the other solutions, the legitimate configurations are those with exactly one

enabled processor.
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The correctness of the solution depends on the value of K relative to n. When
K = n, the system is serial-correct, but not parallel-correct, because there is a cycle of
illegitimate configurations. It has long been known that the system is parallel-correct
when K > n. One of the difficulties in the proof of this fact is showing that the system
is parallel-correct if it is serial-correct. Our techniques provide a simple way to do this.

To show that SK is parallel correct when K > n, we will apply Lemma 3.5. To
do this, we must show that the Acycgy is closed and eventually-parallel(AcycSK,'1)
holds for all v € T'.

Since processor P; can only depend on Pi_j(mod n+1) the only possibility that a
configuration is cyclic is if there is a cycle of all n + 1 processors. Let y—«' be
a transition of SK and assume that 4 is cyclic. If P; moves in the transition, but
P;_1(mod n+1) does not, then P; is not enabled at 4/, and so 7' could not be cyclic.
Thus, since some processor must move in the transition, they all must move. This
implies that all processors are enabled at y and hence 7 is cyclic. Therefore an acyclic
configuration cannot be transformed into a cyclic configuration, so Acycgy is closed.

Assume that eventually-parallel( Acyc gk, ) does not hold for SK and some v€eTl.
Since there are only a finite number of configurations, there is a cycle of configurations

of SK
Yo—=M = N1 =70

such that for 0 < j < k, %; is cyclic. We can assume without loss of generality (by
using multiple copies of the cycle if necessary) that k > n. Let s = Vo(70)- Then by the
actions of Py, Vo(m) =s+1mod K, Vop(12) =s+2mod K, ..., Vo(7a) = +n mod K.
Also, by the actions of P\, P,,...,P., Vi(1) = 5, Va(12) = s, ..., V(72) = s. Since
P, is enabled at '7,;, we also have Vo(7n) = Va(7a) so that s = s +n mod K. But this

is impossible since K > n. Therefore, Lemma 3.5 applies, so serial correctness implies
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parallel correctness, and a demon is unnecessary in this case.

5 Concluding Remarks

We have derived several lemmas that can be used to show that the correctness of a serial
system will not be affected by allowing simultaneous execution of atomic operations.
The utility of these lemmas has been demonstrated by applying them to Dijkstra’s self-
stabilization protocols, showing that demons are unnecessary for the three and four
state solutions and (as was previously known) that a demon is unnecessary for the K
state solution if K’ > n. Our techniques should also be useful in other problems where

the model bf computation developed here is applicable.
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Abstract

We argue that the important property of self-stabilization is, in principle, unstable across system
classes. In particular, we show that, for a wide variety of system classes, there is no simulation that
“preserves” or “enforces” self-stabilization.

1 Introduction

A system is said to be self-stabilizing if starting from any configuration the system is guaranteed to reach a
configuration that is reachable from the initial configuration. The motivation behind this concept is that if,
due to some unpredictable error, the system were to reach an “ynreachable” configuration, it would eventually
correct itself, returning to some “reachable” configuration. Thus, self-stabilizing systems are in some sense
more robust than those that are not self-stabilizing. The notion of self-stabilization has been utilized in the
fields of mathematics and control theory for many years (see, e.g., [CK80, OWA89]). Consider, for example,
the Newton-Raphson method for finding roots of functions. For many functions, the Newton-Raphson
method is self-stabilizing; i.e., no matter what initial estimate is made for the root, eventually the iteration
- will converge to a root. The concept of self-stabilization was introduced to the field of computer science by
Dijkstra in [Dij73], and subsequently has gained much attention in computer science research, particularly
in the area of distributed computing; see, e.g., [Dij74, Lam86, BP89, Gou87, BYC88, BGW89, Mul89].
The main purpose of this paper is to demonstrate how the potential for self-stabilization changes radically
when one class of systems is simulated by another. As an example, consider a result of Dijkstra’s given in
[Dij73]. He gave a problem that can be solved by a self-stabilizing asymmetric ring of processes, and showed
that no such solution exists if the ring is required to be symmetric (see also [LR81]). This result can be
interpreted in the following way: there is no simulation of an asymmetric ring by a symmetric ring that
preserves self-stabilization. This interpretation suggests that the simulation paradigm, which is often used in

analyzing and designing systems, may not be very robust when the issue of self-stabilization is involved. A

*This work was supported in part by U. S. Office of Naval Research Grant No. N00014-88-K-0763 and National Science
Foundation Grant No. CCR-8711579.
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simulation of a class A of systems by a class B of systems — the paradigm in action — is simply a function
f : A — B such that for each system M € A, the computations of f(M) mimic in some well-defined manner
the computations of M. An example of a simulation is the simulation of shared memory programs by CSP
systems [Hoa78). In order to examine the effect of self-stabilization on the simulation paradigm, we will
demonstrate the presence or absence of various types of simulations on a wide variety of system classes.
To make our negative results as strong as possible, our formal definition of simulation will be very weak.
Thus, we are able to show that even for a very liberal notion of simulation (in particular, the simulations
are not even required to be recursive) there are many cases in which simulations preserving or enforcing
self-stabilization cannot exist. Furthermore, we do not even need to consider the effect of inputs to a system
in order to achieve these negative results.

We will now discuss in some detail how the simulation paradigm is used as both an analysis and a design
tool. We then discuss how self-stabilization can affect both these aspects. The simulation paradigm is often
used in the analysis of systems to determine whether a particular property, such as self-stabilization, is
present in a given system. A common scenario is that we have an algorithm or methodology for deciding
the presence of the property in one class of systems, say systems of communicating finite-state machines
(CFSMs), but do not yet have one for some similar class, such as Boolean CSP systems. In order to achieve
such a methodology in a Boolean CSP system, we might simulate the CSP system by a system of CFSMs,
analyze the CFSMs, and finally, conclude properties about the CSP system. More formally, let A and B
be two system classes. The simulation paradigm is then applied to the analysis of systems in the following

manner:
1. Find a simulation f: A — B.
2. Given a machine M € A, analyze f(M).
3. Conclude properties about M.

In order for this procedure to work, the simulation clearly must preserve (the existence or absence of) the
property being studied. This is usually not a problem because the standard simulations nearly always preserve
most useful properties (e.g., deadlock freedom, reachability, liveness, fair nontermination, etc. [KM69, OL82,
EL87,Car87, HRY88]). However, we will show that such is often not the case with respect to self-stabilization.

The simulation paradigm is also used as a tool for designing systems. In this case, we are interested in
determining whether a particular property, such as self-stabilization, can be forced upon a given system.
More generally, we would like to find a simulation of a class A by a class B such that all simulating systems
have the desired property. For example, suppose we wish to design some self-stabilizing system in Ada to be
implemented on a variety of different architectures. If there is some efficiently computable simulation of Ada
programs that forces self-stabilization on each of the target architectures, we do not need to worry about
self-stabilization; we simply design the system in Ada, and use the simulation to force self-stabilization on
the target architecture. Note that in general the classes A and B do not need to be different classes, in which
case we are simply interested in whether the property can be forced on any given system in A. Again, we
will show that self-stabilization cannot be forced for many classes of systems.

Hence, we specifically examine two questions, one related to analysis and the other related to design,
with respect to a number of classes of systems. Let 4 and B be two system classes. The two questions we



ask are:
1. Does there exist a simulation of A by B that preserves self-stabilization?
2. Does there exist a simulation of A by B that forces self-stabilization?

The classes of concurrent systéms we consider include cellular arrays, communicating finite-state machines,
CSP systems, and systems of Boolean programs communicating via 1 reader / 1 writer shared variables. In
order to demonstrate that the difficulties are not simply products of concurrency, we also consider finite-state
machines, Petri nets, Turing machines, and vector addition systems with states.

The main message here is that self-stabilization, as important a property as it is, is very sensitive to
changes in the system classes under consideration. Understanding this sensitivity is the first step for a
system designer who seeks self-stabilization in systems. It is also important to keep the results of this paper
in perspective. In particular, the definition of simulation is intentionally chosen to be very weak to support
the proofs of very strong negative results. Thus, even though a number of positive results are included for

‘completeness, they are not entirely satisfactory. In fact, by taking full advantage of the weakness of our
definition, one might show the existence of some type of simulation by exhibiting a nonrecursive simulation.
Such a simulation would obviously be unusable in the simulation paradigm. Therefore, in any study focusing
on positive results, a stronger definition of simulation should be considered.

The remainder of the Paper is organized as follows. In Section 2, we define much of the terminology used
throughout the paper. In Section 3, we give an overview of the specific problems we examine and summarize
the main factors that tend to disrupt self-stabilization. In Section 4, we examine the role of halting on
self-stabilization. In Sections 5 and 6, we examine two more subtle phenomena, isolation and look-alike
configurations. Finally, in the Appendix we give detailed proofs of several theorems omitted from the body
of the paper to improve readability.

2 Definitions

We include in this paper the examination of a wide variety of models of parallel computation. Although a
particular model may have a more “natural” definition, for the sake of consistency, we define a system of
M concurrent processes as a triple (Q, 90,4), where Q is a (possibly infinite) set of system configurations,
go € Q is the initial configuration, and A = {61, ..., 8n}, where each §; is a finite set of transitions and all
bi’s are pairwise disjoint. For systems of only one process, we also use the notation (Q, go, 6), where 6 is a
set of transitions. Intuitively, each §; represents the transitions of a process M;. Each transition ¢t € §; is a
partial function! ¢: Q — Q. If t(q1) = ¢3, we also write Q1 C i g2orqy —gq Ifq 2 LSy gn+1 and
o =t)..th,n 2> 0, then we also write 1 = Gn41 OF @ — gns1. We define the reachability set of (Q, g, A)
as the set R(Q,¢0,4) = {q | go = g}. The set R(Q,qo,A) is distinguished from Q in that Q is the set
of legal configurations (i.e., those allowed by the syntactic definition of the system), whereas R(Q,q0,4) is
that subset of Q consisting of those configurations that can actually be reached by the system. A haltin g
configuration is a configuration ¢ € Q such that #(q) is undefined for all ¢ € Uz, 6i- A finite computation of

!In order to allow multiple transitions to cause the same action, we should technically define a transition as a symbol denoting
a partial function. However, our definition allows us to avoid introducing additional notation that may lead to confusion. In
any case, we do allow multiple transitjons to cause the same action.



(Q,q0,4) is a finite sequence o of transitions in é such that g0 = q for some g € Q, and t(g) is undefined for
all t € U7, 6. An infinite computation of (Q, g0, A) is an infinite sequence o of transitions in |J=, & such
that for each finite prefix ¢’ of o, there is a ¢ € Q for which g 2 g. A computation of (Q,qo, A) is either
a finite computation or an infinite computation. (Note that according to this definition, a proper prefix of
a computation is not a computation.) Let C(Q, qo, A) denote the set of all computations of (Q, g0, A). A
system (Q,go, Q) is said to be self-stabilizing iff for every ¢ € Q, every computation o of (Q,q,4) has a
finite prefix ¢’ such that ¢ L4 ¢ for some ¢ € R(Q,q0,4). (This definition of self-stabilization is simply a
reformulation of the definition given in [Dij73].)

All of the classes of systems we discuss in this section can be defined by restricting the above definition
of a concurrent system. (A sequential system is just a concurrent system of 1 process.) Usually, it is a
straightforward matter to translate the standard definition of some particular system class to some restriction
of a general concurrent system. In such cases, we will not give the translation, and we will use whichever
characterization is more convenient.

Much of this paper involves the simulation of one system class by another. In order to conclude that
some type of simulation does not exist, we need to formalize the concept of simulation. In order to require
a simulation to preserve the behavior of each individual process, we first make the following definitions. Let
A% denote the set of all finite and infinite sequences of transitions in Ui, §i. For asequence ¢ € A%, let

the projection of o onto process i, denoted 7i(c),1 < i< n, be the homomorphism defined by
e m;(€) = ¢ (where ¢ denotes the empty string);
o x(t)=cif t g6,
o 7;(t) =t otherwise; and
o m(to) = mi(t)mi(o).

Let Ci(Q,q0,4) = {7i(¢) | ¢ € C(Q,90,4)},1 £ i < n. Wesay that a concurrent system (Q',gp, A) of n

processes simulates a concurrent system (Q, go, &) of n processes iff
e there is a homomorphism A : A’® — A% such that
o h(C(Q',q,4") =C(Q,9,8),
o h(Ci(Q',96,4")) = Ci(Q,90,4),1 £ i< n, and
e for any computation ¢’ of (Q’, g5, A'), xi(h(¢”)) is finite iff xi(c’) is finite, 1 £i < n.

We then call h the simulation homomorphism. In order to motivate this definition of simulation, let M =
(Q,90,A) and M’ = (Q’, g0, A’) be arbitrary systems. Intuitively, if M’ simulates M, any computation o’
of M’ “generates” some computation ¢ of M. Thus, we can assume that with each transition in A’ there
is associated some (possibly empty) finite sequence of transitions from A; i.e., we have a homomorphism
h: A — A®. Since each computation of M must be simulated by some computation of M’, and each
computation of M should simulate some computation of M, h(C(M")) = C(M). Also, since the behavior of
individual processes should be preserved, h(Ci(M')) = Ci(M). Finally, only finite (infinite) computations



of individual processes of M should be simulated by finite (infinite, respectively) computations of individual
processes of M’, so for any computation ¢’ of (Q’, g5, A’), #i(h(¢”’)) is finite iff 7i(c’) is finite.

If M, and M, are two system classes, and there is a function f : M; — M, such that for all M € M,
f(M) simulates M, we say M; simulates M;. We then call f the simulation. If for all M € M, f(M)
is self-stabilizing iff M is self-stabilizing, we say f is a self-stabilization preserving simulation. If for all
M € My, f(M) is self-stabilizing, we say f is a self-stabilization forcing simulation.

The reader should note two important points from the above definitions. First, we make no requirements
as to how easy it is to either find or compute each f and h. In particular, even though f must be computable
in order to be used in the simulation paradigm, we do not make this requirement of a simulation in general.
This generality provides for a very weak definition of simulation, yielding some very strong negative results.
The second point is that our systems have no input. If inputs were to be considered, we would need to
define self-stabilization so that for any input, from any configuration containing that input, all computations
eventually reach a configuration reachable from the initial configuration having that input; i.e., we would
assume the input to be incorruptible. Ignoring inputs serves to make our negative results even stronger (i.e.,
no simulation is possible even when inputs are not considered).

One of the factors that tends to disrupt self-stabilization concerns what we call “isolation.” We say an
isolation occurs at a configuration g of M if there exist a computation ¢ from ¢ and distinct computations o
and o from distinct configurations ¢; and g3, respectively, such that for all 1 < i < n, either 7;(c) = m(0y)
or m(c) = 7i(o2), but o is not enabled at either g; or g;. Intuitively, the processes of M become partitioned
into two nonempty sets S; and S, such that each process in S; behaves as if it were executing ¢; from
¢i, and any communication between the two sets is insufficient to correct this behavior. Another factor
we examine concerns what we call “look-alike configurations.” We say that configurations q1 and g, are
look-alike configurations if there is some computation & enabled at both ¢; and g5. Intuitively, the system
does not have the power to differentiate between ¢; and g2 because it may behave in exactly the same way
upon entering either configuration.

Throughout this paper, we will use the notation o™ to indicate the sequence o iterated n times. Likewise,
o will indicate o iterated infinitely many times. Iteration will take precedence over concatenation, so that,
for example, o7° = orrr. We will also use the notation o° to indicate the set {e™ | n > 0}, and % to
indicate the set 0* — ¢. We can then construct expressions denoting sets in the following manner:

o t denotes {t};
e ot denotes {a'.-'r; | i € o and 7; € 7}; and
® o° denotes {7,03...0n |[n 2 0and o; € for 1 < i < n}.
It should always be clear from the context whether a given expression indicates a single sequence or a set of

sequences.

3 Summary of Results

Throughout the remainder of the paper, we present our results concerning various classes of concurrent
systems. These results are summarized in Tables 1 and 2. The proofs of many of these results have the



Systemn Class Forced
With Halting | Without Halting

" Cellular Arrays no yes

{| Linear Cellular Arrays no yes.
Turing machines no yes
Finite-state machines yes yes

CSP no no
1 reader / 1 writer shared memory programs no 7
Communicating finite-state machines no i

Bounded communicating finite-state machines no no
[ Petri nets no no
[[ Petri nets with capacities no no

Table 1 — Results involving simulations of one class by itself.

Simulated Class Simulating Class With Halting Without Halting
8 e B Preserved | Forced || Preserved | Forced |

Cellular Arrays Linear Cellular Arrays —_ — yes yes

Finite-state machines Turing machines no no yes yes

1 reader / 1 writer shared [ Boolean CSP no no no no

memory programs

Boolean CSP Infinite CSP yes no yes no

Boolean CSP Communicating finite-state no no ? ?
machines

1 reader / 1 writer shared | Communicating finite-state no no 2 ?

Memory programs machines

Vector addition systems | Petri nets no no no no

with states

Vector addition systems | Petri nets with capacities yes no yes no

with states

Table 2 — Results involving simulations of one class by another.

advantage of being rather short and fairly easy to follow. Unfortunately, proofs of this sort tend to give
the (sometimes false) impression that the theorems are somewhat obvious. To the contrary, it has been
our experience that problems involving self-stabilization are so different from other problems in distributed
computing that the intuition developed by studying other problems is often misleading in the study of self-
stabilization. To lend support to this claim, we reproduce the following comment of Dijkstra’s concerning
one of his related proofs in [Dij73):

Again I beg my intrigued readers to stop reading here and to try to solve the stated problem
themselves, for only then will they (slowly!) build up some sympathy with my difficulties: the
problem has been with me for many months, while I was oscillating between trying to find a
solution — and many an at first sight plausible construction turned out to be wrong! — and
trying to prove the non-existence of a solution. And all the time I had no indication in which of
the two directions to aim, nor of the simplicity or complexity of the argument — if any! — that

would settle the question.



. We have uncovered three main factors that tend to disrupt self-stabilization: halting, isolation, and look-
alike configurations. Of these three, halting is the most familiar (as far as we know, isolation and look-alike
configurations are new concepts). Furthermore, it is not hard to see that halting is very likely to interfere
with self-stabilization, since the “bad” configuration the system might enter could conceivably be a halting
configuration. The system would then have no way of recovering, since jt would have already halted. Thus,
it follows immediately from the definition of self-stabilization that in a self-stabilizing system, all halting
configurations must be reachable. For most system classes, this restriction causes a loss of computational
power (see Table 1). A more interesting observation from Table 1, however, is that for some system classes,
self-stabilization cannot be forced even when halting is disallowed, Hence, there must be other more subtle
factors, such as isolation or look-alike configurations, interfering with self-stabilization. A look at Table 2
shows how halting can also interfere with simulations of one system class by another. First of all, as is shown
in the first entry of Table 2, when individual processes are allowed to halt, there can be no simulation of
arbitrary cellular arrays by linear cellular arrays (regardless of whether self-stabilization is preserved). The
reason for this is that the communication connections in a linear cellular array form a linear chain, whereas

array were to halt, it would split the system into two isolated components. However, Table 2 again shows
entries which are unaffected by the presence of halting. Thus, it seems necessary to examine the extent
to which halting affects self-stabilization before studying the more subtle jssues of isolation and look-alike
configurations,

4 Problems Involving Halting

arrays and Turing machines, see, e.g., (IKM85, Kos74, Smi71] and [HU79], respectively.) Because celluar
arrays are synchronous systems with multiple transitions executing simultaneously, they are rather awkward
to define formally in terms of our definition of a system given in Section 2. For this reason, we omit in this
section any formal discussion of cellular arrays, leaving their discussion to the Appendix (Theorems A.1,
A.2, and their corollaries), Regarding Turing machines, we will now show that any self-stabilizing Turing
machine must have an infinjte computation; thus self-stabilization cannot be forced if we allow halting.
Theorem 4.1: There is no self-stabilization forcing simulation of Turing machines by Turing machines.
Proof. Consider a Turing machine M that starts in a halting configuration; i.e., its only computation is
the empty computation. Suppose some self-stabilizing Turing machine M’ simulates M. From the definition
of simulation, all computations of M’ must be finite; hence, M’ has a halting configuration. Since Turing
machines have infinitely long tapes, we can modify the tape contents? of any halting configuration of M’
to generate infinitely many new halting configurations for M, Because M’ is self-stabilizing, all of these
halting configurations must be reachable. From Kénig’s Infinity Lemma (Kon36], M’ must have an infinite
computation — a contradiction. (=]

3We assume that all TMs have at least one nonblank symbol in their respective tape alphablets.




In order to demonstrate the full effect of halting on the possibility of forcing self-stabilization on Turing
machines, we now show that self-stabilization can be forced if no halting configurations are present. We
should keep this result in its proper perspective. It is not a very strong result due to our weak definition
of simulation. In particular, for any infinite computation, there is no bound on the maximum number of
moves needed to simulate any transition in the computation. Furthermore, there is no bound on the number
of moves made from an arbitrary configuration before a reachable configuration is reached. Nonetheless, it
does show the existence of a self-stabilization forcing simulation.

Theorem 4.2: There is a self-stabilization forcing simulation of Turing machines with no halting con-
figurations by Turing machines.

Proof. Let M be an arbitrary Turing machine with no halting configurations and k worktapes. We con-
struct a self-stabilizing Turing machine M’ that simulates M. M’ contains 2k + 1 worktapes and operates
as follows. M’ simulates M on k tapes in a straightforward manner. After each simulated move of M, M
scans from left to right a special tape containing a list of transitions simulated so far. When M’ encounters
a symbol other than a transition, it overwrites that symbol with the last transition executed and overwrites
the next symbol with a blank. Let n be the number of transitions in the list. M’ then blanks the first n cells
of the remaining k tapes and simulates the listed transitions on these k tapes. After the simulation of the
list of transitions is completed, M’ compares the first n symbols on each of the two sets of k tapes, verifying
that the corresponding tapes match. Once this is verified, the next move of M is simulated, and the process
continues. If at any time an unexpected symbol is encountered, all tapes are erased to a length equal to the
number of transitions in the list, and the entire simulation is restarted (note that this restart is never done
in a computation from the initial state). It is not hard to see that M" is self-stabilizing and simulates M. O

The only entry in Table 1 for which self-stabilization can be forced even in the presence of halting
is for finite-state machines; such a simulation simply consists of removing all unreachable configurations.
Concerning simulations of one system class by another, Table 2 shows that the only simulation for which
we can show that halting interferes with the preservation or forcing of self-stabilization is the simulation of
finite-state machines by Turing machines. If the tape is removed from machine M in the proof of Theorem
4.1, then this proof shows that there is no self-stabilization preserving (or forcing) simulation of finite-state
machines by Turing machines. On the other hand, let M be an arbitrary finite-state machine with no halting
configurations. By adding a storage tape (that is always ignored) to M, we have a Turing machine M’ with
no halting conﬁguratlons that simulates M. From Theorem 4.2, there is a self-stabilizing Turing machine M"
that simulates M’ (and hence M). To show that there is a self-stabilization preserving simulation of M by a
Turing machine, note that if M is self-stabilizing, M" preserves self-stabilization; otherwise, by adding a new
state g to the finite-state control of M” so that g can never be entered from the outside and can never be left,
we have a Turing machine that simulates M and preserves (the absence of) self-stabilization. (Note that since
it is decidable whether M is self-stabilizing, this construction is effective; in general, however, constructions
need not be effective to show the existence of a simulation, which is simply a function.) Besides Turing
machines and finite-state machines, halting seems to affect self-stabilization to some degree on Boolean
programs in which communication takes place exclusively via shared variables having exactly one reader and
one writer, on communicating finite-state machines, and on Boolean CSP, although at this time we do not
know the full extent of these effects. In particular, self-stabilization cannot be forced on either 1 reader /1
writer shared memory programs or communicating finite-state machines if halting is allowed. Furthermore,



there is no self-stabilization preserving (forcing) simulation of either Boolean CSP or 1 reader / 1 writer
shared memory programs by communicating finite-state machines if halting is allowed. However, we do not
know whether any of these results hold in the absence of halting. The proofs of all of these results involve
isolation, which we discuss in more detail in the next section.

It can be seen from the proofs in this section that when halting affects self-stabilization, it tends to do so
in a straightforward manner. In the next two sections, we examine factors interfering with self-stabilization
in more subtle ways.

5 Problems Involving Isolation

In this section, we examine the effects of isolation on self-stabilization. The primary system class we discuss
in this section is the class of CSP systems [Hoa78]. We first illustrate the effect of isolation by showing
that self-stabilization cannot be forced on CSP systems. By using a similar strategy, we can also show that
self-stabilization cannot be preserved by simulations of shared memory programs by CSP systems. We also
show that when Boolean CSP systems are simulated by infinite-state CSP systems, self-stabilization can be
Preserved, but not forced. All of these results hold regardless of whether halting is allowed. By using halting,
We can extend these techniques to obtain other results shown in Tables 1 and 2 concerning communicating
finite-state machines [BZ83] and shared memory programs; however, at this time we do not know whether
these results hold when halting is not allowed. It might also be noted that a special case of one of Dijkstra’s
proofs in [Dij73] may actually be viewed as a proof via isolation (the astute reader might wish to verify this
claim).

We now define the class of CSP systems [Hoa78]. CSP processes communicate with each other via
message passing. The command “P ! a” is the send command, interpreted as “send to process P message
a.” Likewise, the command “P ? z» is the receive command, interpreted as “receive from process P a
message to be stored in variable z.” The communication takes place in a synchronous fashion; i.e., if M,
sends a message to M,, neither Process may continue until the communication is complete. In terms of our
formal definition of a system of concurrent Processes, no transition t; € §; representing a send to M; may
take place unless it enables a transition tj € &j representing a receive from M;. After t; takes place, t;
cannot be disabled until it takes Place, and no other transitions from §; U ; can occur until t; takes place.
It is also possible to use receive commands in the guards of guarded commands. In this case, the value of
the receive command is true when input is received and false when the other process (i.e., the one from
which the message is to be received) has terminated. The guard remains unevaluated until one of these two
events occurs. An alternative command in which none of the guards is evaluated is suspended until some
guard is evaluated. The variables in a CSP system are Potentially unbounded. A Boolean CSP system is a
CSP system in which Boolean variables are used instead of unbounded variables. For a detailed description
of CSP, see [Hoa78]. We will now show that self-stabilization cannot be forced on CSP systems.

Theorem 5.1: There is no self-stabilization forcing simulation of CSP systems by CSP systems.
Proof. Let M be the following CSP system:




My:: [ true — [ M3 !0 8 M;:: [ My?aq; t

*[ true — skip ] ] 83 [ a=0— *[true — skip ] iz
O true — [ M; ! 1; 83 O a=1-— *[true — skip]]] t3
*[ true — skip ] ] ] 8y

Suppose some CSP system M’ = (M], M}) simulates M, and let h be the simulation homomorphism. Since
M’ can simulate each of the computations having a prefix 81118313, from Konig’s Infinity Lemma [Kon36],
M’ has an infinite computation ¢’ such that h(¢’) = 8,t184 in which M; does not terminate. Along
o', M] reaches a local configuration C,, after which M] progresses indefinitely (to simulate s%) without
any communication with M;. (Note that if M} had terminated, M] would have been able to detect this
via a receive command as a guard of a guarded command.) By similar reasoning, M} can reach a local
configuration C; after which M} progresses indefinitely (to simulate t4) without any communication with
M]. Now consider the computation in M’ where M] and Mj; start at C; and C,, respectively, and each of
them progresses infinitely often. This computation simulates a computation in M that has infinitely many
828 and infinitely many t3s. Since such a computation can never be executed in M , M’ is not self-stabilizing.
o

This proof is valid for both infinite-state CSP systems and Boolean CSP systems. Furthermore, the above
proof shows that there is no self-stabilization forcing simulation of Boolean CSP systems by infinite-state
CSP systems. However, it is easily seen that there is a self-stabilization preserving simulation of Boolean
CSP systems by infinite-state CSP systems: given a Boolean CSP system M, we construct a system M’ by
interleaving the statements of M with statements that force a restart if any variable has a value greater than
1. M’ is clearly self-stabilizing iff M is.

The key feature of the above proof technique is that one process may execute arbitrarily many transitions
while the other process is executing none. Such a situation is quite common in shared-memory programs —
particularly if no wait statement is available. We can therefore extend this technique to show that there
is no self-stabilization preserving (or forcing) simulation of Boolean programs communicating exclusively
through shared variables by Boolean CSP programs; in fact, this result holds even when the shared variables
are required to have at most one reader and one writer (see the Appendix, Theorem A.4).

Other results involving isolation include the fact that self-stabilization cannot be forced on 1 reader /
1 writer shared memory programs. Also, there is no self-stabilization preserving (forcing) simulation of
either Boolean CSP systems or 1 reader / 1 writer shared memory programs by communicating finite-state
machines. However, we do not know at this time whether any of these results hold in the absence of halting.
See the Appendix, Theorems A.3, A.7, and A.8, for proofs of these results.

6 Problems Involving Look-Alike Configurations

A system class that illustrates very nicely the problems with look-alike configurations is that of Petri nets
[Pet81, Rei85]). The set of configurations Q for a Petri net is the set of nonnegative integer vectors of a
specified dimension k. Each transition in a Petri net may be defined by a k-dimensional nonnegative integer
vector u and a k-dimensional integer vector v, u+ v > 0, in the following manner: tuv(w) = w+ v for
all w > u. This notation for a Petri net closely parallels the vector replacement system notation; see, e.g.,
(Kel72]. In terms of more conventional definitions of Petri nets (e.g., [Pet81, Rei85]) k is the number of

10



places, the configuration vectors give the number of tokens on each place, the vector y above describes
the number of incoming arcs from each place to the transition tuv, and the vector y above describes the
net effect of firing tuy. It is easily seen that any infinite computation i the Petri net (N%, w, 6) is also
& computation in (N*, o, ) if w < v, hence, if there is an infinite computation from w, w and w
look-alike configurations. The next lemma and its corollary illustrate how look-alike configurations affect
self-stabilization in Petr; nets.

Lemma 6.1: If the self-stabilizing Petri net (N%, vy, 6) has an infinite computation, then for any w €
N, there is a w 2 w such that v’ ¢ R(NE, vy, 6).
Proof. Suppose (N, v, &) has an infinite computation o and that there is a w € N* such that for all w’' > w,
v ¢ R(NE, vo,6). Let w' = Vo +w, and consider the computation ¢ in (N¥, v/, 5). The set of vectors reached
in the computation from v’ is simply the set of vectors reached in the computation from vy with w added
to each. Hence, each vector reached in the computation from w' is 2 w, and is therefore not in R(N*, y,, 8).
Therefore, (N*, yg, 5) is not self-stabilizing — a contradiction. O

Corollary 6.1: If the self-stabilizing Petri net (N*,vo,6) has an infinite computation, then there is a
w € R(N*, y,, 6) such that for all ¢ € 6,t(w) is defined.

We can now show that self-stabilization cannot be forced in Petri nets.

Theorem 6.1: There is no self-stabilization forcing simulation of Petri nets by Petri nets.
Proof. Consider the Petri net P shown in Figure 1. Suppose the self-stabilizing Petri net P’ = (N%, v, 6)
simulates P. Since al] computations of P are infinite, all computations of P’ are infinite. Thus, from
Corollary 6.1, there.is a w € R(P’) such that for all ¢ € 6, t(w) is defined. Since Y is a computation of P,
there must be some transition ¢] € § simulating a finite, nonempty sequence of t;s. Likewise, since 2ty is a
computation of P, there must be some transition ¢ € § simulating a finite, nonempty sequence of #3s. Thus,
t1 and t§ are both enabled at w € R(P'). However, there is no reachable configuration of P at which both
t1 and t3 are enabled. Thus, P’ does not simulate P — 3 contradiction. Therefore, no simulation forces
self-stabilization. o

Under the above definition of Petri nets, self-stabilization cannot be forced on the Petri net in Figure 1.
On the other hand, if we allow explicit capacities to be given for the number of tokens on certain places, self-
stabilization can be forced on this particular Petrj pet using the construction given in the proof of Theorem
A.11. However, by using more careful arguments, we can show that Theorem 6.1 holds even for this more
general definition. Theorem 6.1 can also be extended in a very natural manner to show that there is no
self-stabilization preserving (or forcing) simulation of vector addition systems with states (VASSs) [HP79] by

A.9, A.10, and A.11.
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A Appendix

In this Appendix, we present the proofs omitted in the main body of the paper. The first proofs we give are
those concerning cellular arrays. Since it is rather awkward to define cellular arrays in the terminology of
our formal definition of a concurrent system, after first giving a standard formal definition, we will explicitly
show how this standard definition may be translated into our terminology. A cellular array is a finite set
{My, ..., Mp} of finite-state machines. The machines operate in a synchronous fashion controlled by a clock;
i.e., each time the clock fires, all machines that have not yet halted change states nondeterministically
according to their respective nezt-move relations. The particular format of the next-move relation of a given
machine depends upon the topology associated with the system. The topology is a mapping ¢ : {1,..,n} —
2{1,-n} guch that i € g(i) for 1 < i < n. Informally, the topology specifies which processes the machine
may reference in determining its next state. More formally, let g(i) = {i1,...,is}, and let the state set of
each M; be given by Q;. Then the next-move relation 6; of M; is a subset of Qi, X -+ X Qi, x Qi. The
next-move relation is interpreted to mean that if M;; is in the state ¢;; for 1 < j £ k, Mi; may move to
state q; iff (i, .- qiu i) € 8. There are two types of states in each machine: halting states and nonhalting
states. If ¢;; is a halting state, then é;; contains no tuples having ¢;; as a component; otherwise, for all
Qiy s ooer Qijors Qisans oo Qins there is at least one g; such that (iy s - Ginr @) € &;- Thus, in a nonhalting state,
there is always some move available, regardless of the states of the other machines.

We will now show how the cellular array (M1, ...;My) defined above may be defined as a concurrent
system (Q’, ¢h, A'). The main problem is that in a cellular array, transitions from different machines execute
simultaneously. Our concurrent system (Q', g5, A") will mimic this behavior by executing a “simultaneous”
collection of transitions sequentially in the order of their machine subscripts. Since each machine in a
cellular array executes a transition at each clock cycle until it halts, such a serial representation will give an
unambiguous description of the actual computation. It will also be clear that (@, b, A') is self-stabilizing
iff (My, ..., Mp) is.

Let (q1,.--»qn) be a configuration of (My, ..., Mn) (i.e., each M; is in state gi). For 1 < i< n,let
Pi(q1, .- qn) be the set of machines M; such that j < i and ¢; is not a halting state; ie., Pi(q1)0n)
will be the set of machines whose moves will be simulated prior to the move of M;. Let 6;(q1,..-,qn) be
the set of transitions in & enabled at (g1, ...,gn). Let Di(q1, .., dn) = &, (a1, vy @n) X o0 X 8y (g1, ey gn) Af
Pi(q1, . 8n) = {Miy, o M;,} # 0, and Di(q1, v qn) = {0} if Pi(q1,-9n) = 0. The set of configurations Q'
will be composed of a set NHC of nonhalting configurations and a set HC of halting configurations. We
define NHC = {(g1,.-+9n,T) | gj € Qj for 1 £ j < m, and for some i, ¢; is a nonhalting state and T €
Di(q1, .--yqn)}. The components g1, ..., 4n give the current states of each of the machines, and T gives a prefix
of some sequence of transitions simulating one step of the cellular array. We define HC = {(q1,--14n,9) | gj
is a halting state of M; for 1 < j < n}, and Q' = NHCUHC. Let t € §; for some 1 < i < n. We define the
transition t' € & by

o (1,90, T) = (g1, 190, TU {t}) if t € T and (q1, g T),(q1y 00180, TU {t}) € Q; and

o (g1, erns s T) = (P1s oo Pr @) if (01,18, T) € @, (g1, 08, TU{t) € Q' 2 18 enabled in (g1, -1 n),
and (My, ..., Ma) reaches (pi, ..., pn) upon simultaneously executing the transitions in T'U {t}.

Thus, if from configuration (g1,...,¢n) of (My, ..., M) the set of transitions {ti,,...,%i,} simultaneously
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fire to produce (pl,...,p,:), this action is simulated by (911 01qn, 8) :-'-‘- (91501 9n, {ti,}) iﬁ 00 T e
(g1, ...y Iy {tiy, e tin_,}) K0 (P10 Pn,8). We now define A’ = {61,...,6.}, where each i={t'|tes).
Finally, we let ¢ = (qi, ..., qn, D), where ¢; is the initial state of Mifor1<i<n.Itis nowa straightforward
matter to verify that (Q, g, A’) exhibits the desired behavior.

A class of cellular arrays of particular interest is the class of linear cellular arrays. A linear cellular array
is a cellular array (M, ..., M,) whose topology g is defined by

° g(1) = {1,2};

® g(i) = {i-1,i,i+1) for2<i<n-1;and

® g(n) = {n—-1,n}.

We will first show that self-stabilization cannot, in general, be forced upon either cellular arrays or linear
cellular arrays. In order to show the importance of halting to the proof of this theorem, we will then show
that self-stabilization can be forced upon both cellular arrays with no halting states and linear cellular arrays
with no halting states.

Theorem A.1: There is no self-stabilization forcing simulation of cellular arrays (linear cellular arrays)
by cellular arrays (linear cellular arrays).

Proof. Let M = (M1, M3) be the cellular array shown in Figure 2. Two computations of M are possible:
o1 = 8,t183125%, and oy = 82t1t3t{. (Recall that the transitions in each of the pairs s;t; are executed
simultaneously in the actual cellular array.) Let M’ = (M{, M}) be any cellular array that simulates M.
Since M’ must be able to simulate both o1 and o3, both M{ and M} must have halting states. Thus, M’
has a halting configuration, and is therefore not self-stabilizing. Since any cellular array of two machines
can be viewed as a linear cellular array, the theorem follows. O

Theorem A.2: There is a self-stabilization forcing simulation of cellular arrays with no halting states

by iinea.r cellular arrays.
Proof. Let M = (M, «sMy;) be an arbitrary cellular array. Since each M; is a finite-state machine, we
can construct one finite-state machine A describing the entire system M; i.e., each state of 4 is a tuple
(91,.-19n), where each gi is a state of M;. We may then remove all unreachable states from A. We will
now describe a self-stabilizing linear cellular array M’ = (M|, ..., M;) that simulates M. All of the work
will actually be done by the machine M 1- This machine will select an infinite sequence of transitions from
A representing a computation of M. After each transition ¢ of 4 is selected, M{ will wait long enough for
all the other machines to determine that ¢ has been selected. At this time, all the machines simulate ¢. M|
then selects the next transition, and the simulation continues in the same manner.

More formally, let Qa4 be the state set of A, and let §4 be the transition relation of A. The state set of
M;, 1<i< n, will be {(9,9) | g€ Q4) U{(t.j,é)[t€és andi<j < n}. The next-move relation of Ml is
defined solely in terms of the current state of M. If M/ is in state (¢,1), it may move to any state (t,1,1)
such that ¢ is enabled at ¢ in A. If M| is in any state (t,j - 1, 1), 2 £ j < n, it moves to state (tg,1)..18
M] is in any state (t,n,1), it moves to the state (¢, 1) such that transition ¢ Places A in state ¢’; moves of
this last type will simulate moves of M;. For 2 < i < n, the next-move relation of M/ is defined solely in
terms of the state of M/_,. If Mj_, is in some state (g, i — 1), M{ moves to state (g, ). If M;_, is in some
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state (¢,j — 1,i = 1), i £ j < n, M{ moves to state (t,3,i). If M/_, is in some state (t,n,i— 1), M/ moves
to the state (¢’,i) such that transition ¢ places A in state ¢'; moves of this last type will simulate moves of
M;. The initial state of M’ has each M{ in the state (g, i) such that g is the initial state of A. It is not hard
to see that in any computation from the initial state, M’ simulates the next move of M every n + 1 moves;
thus, M’ simulates M. Furthermore, it is not too difficult to see that from any configuration, after at most
i — 1 moves, M/ is in some state consistent with M]. Since all states of M] are clearly reachable from the
initial configuration, M’ must be self-stabilizing. o

The above simulation is not very satisfying because the entire computation is actually being done by one
machine, M{; the machines M3, ..., M, simply execute the transitions that M/ tells them to execute.

The following corollaries follow immediately from Theorem A.2.

Corollary A.1: There is a self-stabilization forcing simulation of celluar arrays without halting states
by cellular arrays.

Corollary A.2: There is a self-stabilization forcing simulation of linear celluar arrays without halting
states by linear cellular arrays.

We now introduce another class of concurrent systems, the class of Boolean programs in which each
variable may be read by at most one process and written by at most one process. All communication is
therefore performed via shared variables to which one process writes and from which another process reads.
The syntax we use to describe these systems is similar to CSP without the communication commands (see
[Hoa78]). We will now show that self-stabilization cannot be forced on this type of system. The proof will
use both halting and isolation.

Theorem A.3: There is no self-stabilization forcing simulation of 1 reader / 1 writer shared memory
programs by 1 reader / 1 writer shared memory programs.

Proof. Consider the following system M = (M, M3), where all variables are initially zero:>

M [ true —a:=1 5 My [ *fa=0Ab= 0—skip];
O true — [b:=1; 82 a=1— *[true —skip]] t:
*[ true — skip ] ] ] 83

The only variables in M, a and b, are read by M3 and written by M;. M first nondeterministically chooses
either s, or s3. If it chooses 51, it writes 1 to a and halts. If it chooses s2, it writes 1 to b and repeatedly
executes s3. Meanwhile, M; repeatedly executes i, until M, executes its first transition. If M,’s first
transition is sy, Mz then repeatedly executes t3. Otherwise, M3 halts. Thus, all computations of M are
infinite, but in any computation, one of the processes executes only finitely many times. Therefore, in any
system M’ = (M}, M}) that simulates M, both M| and M} must have the ability to halt. Since all variables
can be read by at most one process, there must be a configuration of M’ in which both M{ and M; have
halted. Thus, M’ is not self-stabilizing. o

We will now show that there is no self-stabilization preserving simulation of shared memory programs by
Boolean CSP systems. It is not immediately clear, however, that there is any simulation between these system
classes, whether or not self-stabilization is preserved. Hence, we first sketch an example of a simulation that

does not preserve self-stabilization. Let M = (M1, ..., Ma) be an arbitrary system of 1 reader / 1 writer

3Throughout the remainder of the paper, we will always assume the variables to be initially zero.
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shared memory programs. M’ = (M],..., M;) will be a Boolean CSP system that behaves as follows. M]
first creates a status vector containing the values of all shared variables of M and all processes which have
not halted. It then nondeterministically decides which process M; will execute first. If i # 1, M sends the
status vector to M. From this point on, there will be exactly one “active” process at any given time when
no communication is taking place; the other processes will be waiting for messages from all other processes.
The active process, say M/, will nondeterministically simulate a nonempty (but possibly infinite) sequence
of transitions from M;, updating the status vector accordingly. If it has chosen to simulate a finite sequence
of transitions, it then nondeterministically selects some process from the list of processes which have not
halted. It then sends the updated status vector to that process, which then becomes active. If at any time
a process M simulates the termination of M;, it removes its own name from the list of processes which
have not halted, sends the status vector to some process that has not halted, then halts. If at any time
the list of processes that have not halted contains only one process, that process remains active until it
simulates a termination. The details of this simulation are left to the reader. The following theorem, shown
using isolation, now shows that neither this simulation nor any other simulation can be guaranteed to either
preserve or force self-stabilization.

Theorem A.4: There is no self-stabilization preserving (forcing) simulation of 1 reader / 1 writer shared
memory programs by Boolean CSP systems. ;
Proof. Let M = (M;, M) be the following shared memory system:

M: *[ a=0=b:i=1 81 My *[ b=0—a:=0 i
Da=1=5:=0] s - Ob=1—a:i=1] ts

M has no halting configurations, and M is clearly self-stabilizing, since all configurations are reachable.
Suppose some CSP system M' = (M{, M}) simulates M with simulation homomorphism k. Let S = {c | &
is a finite prefix of some computation ¢’¢’’ of M’, M; has not terminated in ¢/, and h(¢’) € 5,*}. Since M
can execute any computation beginning with (s,)"¢; for any n, S is infinite. Hence, from Konig’s Infinity
Lemma [Kon36], there is an infinite string ¢’ such that any finite prefix of ¢ is in S. Clearly, ¢/ must be a
computation of M’ in which M} does not terminate. However, since h(¢’) contains no transitions from M,
¢’ must contain only finitely many transitions from Mj. Thus, 7,(¢’) and h(7;(¢”)) are both infinite. It
must therefore be the case that h(c’) = sy . Hence, there is some state of M} from which there is an infinite
computation simulating s{ and containing no communication commands. By similar reasoning, there is a
state of M; from which there is an infinite computation simulating t{ and containing no communication
commands. There must therefore be a configuration of M’ from which a computation containing infinitely
many ;8 and infinitely many t,s, but no 28 nor ¢3s, can be simulated. Since such a computation can never
be executed in M, M’ is not self-stabilizing. a

Note that the above theorem holds even when halting states are disallowed.

The next class we examine is that of communicating finite-state machines (CFSMs) [BZ83]. Informally,
a system of CFSMs is a finite set of finite-state machines that communicate via unbounded FIFO channels.
No empty channel detection is possible, and either a read or a write to some channel is performed by each
transition. (See, e.g., [BZ83] for a formal definition of CFSMs.) We will first show that self-stabilization
cannot be forced on systems of CFSMs. The proof uses both halting and look-alike configurations.
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Theorem A.5: There is no self-stabilization forcing simulation of CFSMs by CFSMs.
Proof. Let M = (M, M3) be the system of two CFSMs defined as follows. M, contains only one state
and no transitions. M, contains only one state and one transition, which writes some symbol to the output
channel of M;. Suppose there is a self-stabilizing system M’ = (M{, M3) of CFSMs that simulates M. Then
for any computation ¢’ of M’, x,(c”) is finite and x9(0’) is infinite. Since Mj is finite-state and may only
read finitely many symbols from its input channel, in any computation ¢/, Mj must enter the same state
twice without executing any reads in between. Thus, M; has a state ¢ from which there is an infinite
computation containing no reads. It follows from Kénig's Infinity Lemma [Kon36] that the input channel to
M} is bounded, say, by m. If we therefore start M} in some arbitrary state, M3 in g, and the input channel
to M} with some string longer than m symbols, there is an infinite computation in which the contents of the
input channel to M} are unchanged. Thus, M’ is not self-stabilizing — a contradiction. o

Note that in the above proof both halting and isolation are involved. At this time, we are unable to show
whether the elimination of halting states might allow self-stabilization to be forced.

A system of CFSMs is said to be bounded if its reachability set is finite. Consider any bounded system
of CFSMs having an infinite computation . Let ¢ be some system configuration that is reached more than
once by ¢, and let a be the string written to some channel ¢ between the first two occurrences of ¢g. Let
¢’ be ¢ modified by appending a to the contents of channel ¢ enough times so that ¢’ is not reachable. It
is not hard to see that there is an infinite computation ¢’ from ¢’ in which ¢' is reached infinitely often.
Therefore, no bounded system of CFSMs having an infinite computation is self-stabilizing. This fact implies
the following theorem. X

Theorem A.6: There is no self-stabilization forcing simulation of bounded CFSMs by bounded CFSMs.

We now show that there is no self-stabilization preserving simulation of Boolean CSP systems by CFSMs.

Theorem A.T: There is no self-stabilization preserving (forcing) simulation of Boolean CSP systems by
CFSMs.

Proof. Consider the following CSP system M:

M;:: [ skip] Mjy:: *[ true — skip |

M is clearly self-stabilizing. Furthermore, M simulates the system of CFSMs given in the proof of Theorem
A.5. Thus, if there were a simulation of M by a system of CFSMs, we would have a simulation of the system
of CFSMs given in the proof of Theorem A.5 by CFSMs — a simulation we have already shown does not
exist. : ]

The same technique may be used to show the following theorem.

Theorem A.8: There is no self-stabilization preserving (forcing) simulation of 1 reader / 1 writer shared
memory programs by CFSMs.

We now examine the class of vector addition systems with states (VASSs). The set of configurations of a
VASS is of the form Q x N*, where Q is a finite set of machine states. The transitions are defined in terms
of two machine states, g and ¢, and a vector v € N* in the following manner: te.¢wl(g,w) = (¢, w+v) for
w+ v > 0. Thus, a VASS may be viewed as a Petri net augmented with a finite-state control (see, e.g.,
[HP79]). There is therefore a straightforward simulation of Petri nets by VASSs, and Hopcroft and Pansiot
(HP79] have shown how to simulate a k-dimensional VASS by a k + 3-dimensional P-et.ri net. However, we
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show in the next theorem that in general there is no simulation of 8 VASS by a Petri net that preserves
self-stabilization. This proof uses look-alike configurations.

Theorem A.9: There is no self-stabilization forcing (preserving) simulation of VASSs by Petri nets.
Proof. Consider the VASS M shown in Figure 3. Since every configuration of M is reachable, M is self-
stabilizing. Furthermore, M simulates the Petri net in Figure 1, which we have already shown in Theorem
6.1 cannot be simulated by a self-stabilizing Petri net. a

Finally, we examine a slightly more general class of Petri nets. We define a Petri net with capacities in the
same way as a Petri net with the exception that the set of configurations may be restricted so that certain
vector coordinates (i.e., places) may not exceed specified bounds. In what follows, we first use look-alike
configurations to show that self-stabilization cannot be forced upon Petri nets with capacities; we then give
a self-stabilization-preserving simulation of VASSs by Petri nets with capacities.

Theorem A.10: There is no self-stabilization forcing simulation of Petri nets with capacities by Peitr

nets with capacities.
Proof. Let M be the Petri net shown in Figure 4. M behaves as follows. First, ¢; may fire arbitrarily
many times (possibly infinitely many times). At any time t; may fire once, permanently disabling t,. After
t; fires, M executes an infinite computation containing only t3s and t4s; however, ¢4 may never have fired
more times than ?3. Consider the marking v in which py = 1, p; = 0, and p3 = 1. (Note that v and vg
are look-alike configurations). Clearly, v is not reachable. However, the computation ¢ = ¥ from v enters
v infinitely often; therefore, M is not self-stabilizing. In the execution of & from v, infinitely often some
sequence of transitions t5t5:7', k < m, is enabled. Since such a sequence is never enabled in any computation
of M from its initial marking v, this fact is enough to show that M is not self-stabilizing. We will now show
that such a phenomenon occurs in any Petri net with capacities that simulates M.

Let M' = (Q’,v,6') be a Petri net with capacities that simulates M, and let A be the simulation
homomorphism. Let S be the following set of suffixes of computations of M: S = {t,titit4 | i > 0}. For
each i > 0, there are only finitely many sequences ¢ of transitions from vj such that h(c) = t}; otherwise,
from Konig’s Infinity Lemma, M’ would have an infinite computation simulating t{ for some j > 0. Hence,

for each i > 0, there is a o; such that
1. vy 2 w; in M’
2. h(o;) =13; and
3. infinitely many ;:omputa.tions in S can be simulated from w;.

From Konig's Infinity Lemma, there is a computation o of M’ such that h(¢) =ty and for any finite prefix
0y of o, there exist o and w such that v} .3’ w and infinitely many computations in S can be simulated
from w. From [KM69], ¢ = 010203 where vj = v} =3 v}, 03 # ¢, v} < v}, and on all bounded coordinates,
v} and v} are equal (see Figure 5).

Let o4 be such that v “’3* v} and infinitely many computations in S can be simulated from vj}. Let S’
be the infinite subset of S that can be simulated from vj. From Konig’s Infinity Lemma, there is a 7 such
that A(r) € tat5 and any finite prefix of 7 simulates a prefix of some computation in S’. From [KM69],

7 = ry7ams such that v = v} 2 v§, 1 # ¢, v4 < v}, and in all bounded coordinates, v and v are equal.
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Let m be such that h(rymry) = tat7 'ty for some computation 7 from v§. Clearly, h(r;) # ¢ (otherwise
h(ero4m174) is finite) and t3 & h(72); thus, h(m) € 3.

Let v/ = vh + vy — v, 0 = 0107, and ' = o4mi 7. We claim that ¢’ is a computation from v’ and
that infinitely often in o/, 7 is enabled. To see this, first note that since vy > v ‘and vy and v} are equal
on all bounded coordinates, any infinite computation from v; is also a computation from v’ (v and v’ are

010'
—? w;, and

look-alike configurations). Clearly, ;0% is a computation from vf, and hence from v'. Let v’
let z = vf — v and y = vj — vj. (Note that both z and y are nonnegative and are zero in all bounded
coordinates of M'.) Since w; = vj +z +iy, Wi 2 vy+z+iy > vi+z+iy=vi+iy,andriisa computation
from v§ + iy. But A(7') = titat5t7ty where k < m — a suffix that can never be executed in M. Hence,
w; is unreachable for all i > 0, so from v/, ¢’ never reaches a reachable configuration. Therefore, M' is not
self-stabilizing. o

Since Petri nets with capacities can clearly be simulated by VASSs, we have the following corollary.

Corollary A.3: There is no self-stabilization forcing simulation of VASSs by Petri nets with capacities.

We conclude by showing that there is a self-stabilization preserving simulation of VASSs by Petri nets with
capacities. The obvious strategy to use in trying to prove this theorm is to use 1-bounded places to represent
each of the states in the VASS. The difficulty in this approach is dealing with the extra configurations
introduced while not allowing transitions to be enabled at the wrong times. However, we are able to
overcome this difficulty in the proof that follows.

Theorem A.11: There is a self-stabilization preserving simulation of VASSs by Petri nets with capacities.
Proof. For ease of explanation, we will only give a self-stabilization preserving simulation of a finite-state
machine by a Petri net with capacities. It should be clear how to extend this simulation to VASSs. Let M
be an arbitrary finite-state machine. Without loss of generality, assume that each transition of M changes
the state of M; otherwise, we can clearly add states as necessary to enforce this condition without affecting
self-stabilization. Let the state set of M be @ = {q1,---,qn}. We construct a Petri net M’ with n 1-bounded
coordinates as follows. We represent each state ¢; of M by a vector v; in which coordinate i is 0 and all
other coordinates are 1. We simulate a transition ¢ from state ¢; to state g; by transition t' shown in Figure
6. (Note that t' is not enabled in any other configuration.) Clearly, the Petri net so constructed simulates
M. We must now deal with the configurations of M’ that do not correspond to any state of M; i.e., those
configurations in which the number of coordinates having a value of 0 is not exactly one. The first of these
configurations is the vector of all 1s. We introduce a new transition, only enabled at this vector, which brings
M’ to the conﬁguratibn representing q; (see Figure 7). Finally, we can bring all other vectors to the vector
of all 1s as shown in Figure 8 (note again that each of these transitions is only enabled at one vector). It
should be clear that M’ is self-stabilizing iff M is self-stabilizing. =

The simulation given in the above proof is much better than most of the other simulations we have
given in this paper. First of all, it is a real-time simulation. Also, if we have some bound on the number
of moves needed for the VASS to stabilize, the bound for the Petri net with capacities is only two greater.
Unfortunately, the size of the description is exponential in the size of the description of the VASS due to the
large number of transitions from “bad” configurations.
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ABSTRACT

We first review self-stabilization and define it based on the required criteria and desired
properties. An application of self-stabilization to detecting faulty processors in a Byza-
tine agreement setting is given. We then define inherent fault tolerance and illustrate it
with the orignal inherently fault tolerant (IFT) example given by Dijkstra. The relation-
ship between self-stabilization and inherent fault tolerance is that self-stabilizing pro-
grams retain stability in spite of undesireable state transitions while IFT programs pos-
sess stability in spite of the removal of some statements. We also review the role of non-
determinism in self-stabilization and inherent fault tolerance. Some theorectical aspects,
namely, the correctness proof of self-stabilizing and IFT programs and the existence con-
ditions for decentralized algorithms are presented. We conclude that a most desirable
system is one that is self-stabilizing and inherently fault tolerant with decentralized con-

trol.






I. Introduction

In physics, an object is said to be in a stable state if the forces acting on it tend to
restore it to its original state whenever it is perturbed from its position by a temporary
external force. In the early 1970’s, Dijkstra coined the term *‘self-stabilizing system’’ to
refer to a distributed algorithm that could restore itself to a desired state from any arbi-
trary state within a finite number of steps. Dijskra illustrated this with a cyclic relaxation
algorithm [Dij73] that allowed points on a unit circle to distribute themselves evenly
along the circumference irrespective of the starting state. He also developed three self-
stabilizing protocols for assuring mutual exclusion in a ring network where processes
could only communicate with nearest neighbors [Dij74]. His algorithms required non-
deterministic execution and special processes (**top’’ and ‘‘bottom’’) that behaved dif-
ferently from the other processes. Kruiger extended self-stabilization to tree networks
[Kru79] and LeLand applied it to develop a self-stabilizing token passing protocol
[LeL79]. In his keynote address at the 3rd PPDC, Lamport bemoaned the fact that self-
stabilization had not been pursued actively in the ensuing years [Lam83]. More recently,
Brown, Gouda, and Wu have developed a self-stabilizing algorithm that does not require
nondeterministic control and, hence, is viable for implementation using delay sensitive
circuits [Bro89], and Burns and Pachl have developed an algorithm for a prime number

of processes that dispenses with the need for special processes [Bur89a].

The major attraction of self-stabilization is the perceived elegance of eliminating
clumsy mechanisms for detecting illegal states and initiating recovery actions. It also
does not require system initialization, a task which is difficult to coordinate in distributed
systems. The price paid is that the system may g0 through a vulnerable period when its
behavior does not fully satisfy the requirements. However, for applications that require
“*good’’ behavior only on the average, e.g. load balancing and other optimization tasks,
self-stabilization appears to be quite viable. It imposes very few overheads as compared

with traditional all-or-nothing approaches.
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Dijskra’s cyclic relaxation algorithm [Dij73] has another interesting property,
namely, it can tolerate the permanent failure of any single point. That is, if one of the
points is immobilized, then the other points will adjust themselves properly without
invoking any special actions, such as failure detection and recovery mechanisms. We
observed this in 1984 and used the term *‘inherent fault tolerance’’ to distinguish it from
conventional explicit fault tolerance methods such as checkpointing, rollback, and
recovery. Subsequenily, we deveioped the basic concepts of inherent fault tolerance
along with several IFT programs for different applications, including a program for con-
trolling a two dimensional robot [Bas85]. Independently, Hinton developed an IFT pro-
gram for controlling a figure bending to pick up an object [Hin84] and Rudolph
developed an (almost) IFT sorting algorithm using balanced networks [Rud85].

The rest of the paper is organized as follows. Section II defines some notations and
the fixed point set of programs while section III defines self-stabilization and illustrates it
with an example. Section IV defines inherently fault tolerant programs and section V
discusses conditions under which nondeterministic process-control programs can be exe-
cuted asynchronously and conditions for the existence of decentralized programs.

Finally, section VI summarizes the paper and outlines some research directions.

II. System Model

In order to have a consistent definition for the topics we are discussing, we will give
a system model] in this section. This model will be general to all the definitions given
later for self-stabilization and inherent fault tolerance.

A system can be expressed by three entities, (P,X,S), where P denotes a set of Ny
statements, P = (p; | 1<i<n, }; X denotes a set of external statements which can cause
undesired state transition; and S denotes the system state space that is specified by cer-

tain system space constraints.

Let P (s) denote the states obtained by applying P to state s € S. The execution
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sequence of P can be synchronous parallel, asynchronous parallel, or nondeterministic
depending on the computation model. Note that the application of P to a state 5 in dif-
ferent execution models will be different. Under the synchronous parallel model, P (s)is
the state obtained by applying all p;, 1Si snp simultaneously till all statements com-
plete their execution. Under the asynchronous parallel model, application of P will be
over a unit time period where any p; can start at an instance of the time period. Under the
nondeterministic model, application of P refers to application of any one p; in P. Also,
we use P*(s) to denote the state in S reached by starting from s and repeatedly applying
P k times. We can define the fixed point set of a program as follows.

Fixed point set. A set FP(P), FP (P)cS, is a fixed point set of P iff Vx e FP(P):
(P (x)e FP (P)AVx'€FP (P): 3k21, P*(x)=x).

We will use fp(P,s) to denote a fixed point set reached by starting from state s and
applying P repeatedly. Note that, under the asynchronous parallel or nondeterministic
execution model, the system may converge to different fixed point sets for a given start-
ing state. However, without loss of generality, we will assume that only one fixed point
set exists for any given starting state.

The goal of the system can be expressed by a predicate G ("), ie., G(s) is true iff s
is a desired goal state. A goal state is also referred to as a legitimate state [Dij74]. The
partial correctness of a program means that it should satisfy (s | G(s)}<FP (P) (i.e., it
should be in the correct state upon termination) The termination of the program requires

the program to reach the fixed point set within a finite time.

II1. Self-Stabilizing Systems

In this section we first define stability and characterize self-stabilization. Then we
present an application of self-stabilization to the detection of faulty processors in a

Byzantine agreement situation.



3.1. Stability of a System

Stability is an intuitively desirable attribute for any system. However, it must be
built into the system since there do exist systems that are not stable. Here, we define
several classes of systems with respect to their stability. We consider systems which are
stable or multi-stable as well as those that are semi-stable, or unstable.
Stable system. A system (P,X,S)is a stable system iff
VseS, we have fp(P,s)#D and Vx e fp(P,s):: G(x), ie. system goal can be
achieved irrespective of the current state.
Note that for a system to be stable requires not only that it should reach certain fixed
point sets irrespective of the starting position, but also that the fixed point it reaches
should be a legitimate state.
Multiple fixed point sets. A system has multiple fixed point sets iff
VseS:ufp(Ps)2DA@sy,526S:fp(P.s)Afp(P S2)=2).
Mulni-stable system. A system is a multi-stable system iff it has multiple fixed point sets
and it is a stable system.
The set of multi-stable systems is a subset of the set of stable systems, and it contains
more than one disjoint fixed point sets.
Semi-stable system. A system is semi-stable iff it has multiple fixed point sets and
3s,5'eS:@xefpPs)x'efpPs):=Gx)AGEK)).
This indicates tl‘lat the system has at least one saddle point which could make the system
converge to an undesired fixed point and at least one desirable fixed point.
Generally, it is not interesting to have a system which satisfies the predicate
Vse§:(Vxe fp(P,):—=G(x)),ie. no fixed point sets of the system is the goal state.
Unstable system. 3s € S:: fp(P,s)=@. In this case, if the system starts from some
state s, it will move infinitely far from any fixed point set. Clearly, only an infinite state

machine can be unstable in this sense.



3.2. Self-Stabilization Model

Any formal definition of self-stabilization must fully capture the basic characteris-
tics of self-stabilization. It is easier to give examples of systems that are obviously not
self-stabilizing. For example, we certainly do not wish any statement p; to have the fol-
lowing code.

if =G (s)—s:=50 [ G(s)—skip end if
where s is a state such that G (so) is true.

Assume that state s can be expressed by a set of state variables. Then we can
denote state s by {vo, " Vm } and let R (p; ) denote the read-set of p; (i.e., state variables
that are referenced by p;) and W (p;) denote the write-set of p; (i.e., variables that are
modified by p;). A self-stabilizing system can be defined as a system which is a ‘‘stable

system’’ and has the characteristics listed in the following.

1. Local reference. Vi, |R(@)|<<m A [{j | R@pi)NR(p; =0} | =np.

2. Local effect. ¥i, |W@)|<m A |{j | W (p; )NW (p; =2} | = np.

3. Local view. iz |{s | 3 function f:: f(R(p;)=G(s)} |<< number of possible
states.

4. Equivalent power. The sets of transitions caused by different statements are similar.

These attributes collectively measure the degree of decentralization of a self-stabilizing
system. (Attributes for distributed systems are presented by Jensen [Jen81].) Or, in
another sense, they measure the degree to which a system is self-stabilizing. The ideal
system would have (1) disjoint read-sets, (2) disjoint write-sets, (3) no state in which a p;
can infer whether G is true or not, and (4) identical statements. At the other extreme, we
have a system where a statement has a global view and causes global changes in the state

space.

There are several advantages in using self-stabilization. A self-stabilizing system is

very efficient under normal operating situations. It can use datagram protocols and main
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memory data structures since it can implicitly tolerate transient failures. Further, due to
the local nature of each statement, it imposes less communication load on the system.
Also, self-stabilizing programs are usually compact since there are no auxiliary mechan-
isms for failure detection and recovery.

On the other hand, it is harder to discover and prove self-stabilizing programs.
Also, it has a *‘vulnerable’’ period during which it cannot meet the system requirements.
Consequently, this approach is viable for applications that will not suffer extreme

adverse consequences should the system fail for a finite time.

3.3. Applications of Self-Sfabilization

It may not be possible to have self-stabilizing algorithms for all problems. How-
ever, there are a lot of problems for which there are elegant self-stabilizing solutions
which result in simple and reasonably efficient code. We have developed self-stabilizing
algorithms for several common problems, e.g. robot path planning [Bas85], two-variable
inequality problem [Yen85], load balancing in a distributed systems [Kam87], and detec-
tion of faulty processors in a variation of the Byzantine agreement problem [Zha87].

Here, we will give a self-stabilizing ‘‘mostly Byzantine'’ agreement algorithm
[Zha87] to illustrate the applicability of the self-stablization method. The Byzantine
agreement problem addresses methods of reaching agreement in the presence of arbitrary
processor failures in a distributed computing environment [Lam82] [Pea80]. Consider a
set of processors py p3....,Pn , some of which may be faulty, that communicate by directly
sending messages to one another. Each processor p; has an initial value v;. The goal is
that, after a number of message exchanges, each processor p; has to decide on a value d;,

such that the following conditions are satisfied:
(1) Agreement: Every reliable processor should decide on the same value, i.e., d; =d;
for all reliable processors p; and p e

. (2) Validity: If all the reliable processors have the same initial value v, then for every



reliable processor p;, d;i=v.

Though it seems deceptively simple, this problem is intricately difficult if only oral
communication (which is the primary message passing mechanism used by most Byzan-
tine algorithms as well as by the *‘mostly Byzantine’’ algorithm in this section) is used. It
is shown that in case of ¢ faulty processors, at least 3t+1 processors are needed [Lam82]
[Pea80] to work for at least £+1 round of message exchanges to assure Byzantine agree-
ment [Fis82] with no fewer than £2(nf) messages [Dol85]. Algorithms that attain the
lower bound of z+1 rounds use a number of message bits exponential in r [Dol82]
[Lam82] [Pea80]. The best polynomial message algorithm so far is given by Srikanth
and Toueg which uses 2¢r+1 rounds and O (nt2logn) message bits [Sri87]. Coan
presented a canonical form of algorithm which approaches the lower bounds of rounds by
a factor of 1+€, which can be arbitrarily close to 1, and uses O (tnl 28 +3) message bits

[Coa86].

The mostly Byzantine agreement relaxes the requirement of reaching agreement
once by trying to reach agreement many (potentially infinite) times while requiring
agreement as an overall property [Zha87]. For example, if in the original Byzantine
agreement problem, the Byzantine generals have to decide whether to attack or retreat in
a battle, then in the mostly Byzantine agreement situation, the generals have to repeatly
decide whether to attack or retreat in a ldng sequence of battles, as long as almost all the
time the loyal generals make the same decisions. Such a kind of repeated attempts at
reaching agreemient may exist in some process control tasks. The requirement of the

mostly Byzantine agreement can be stated as follows:

(1) Validity: If all the reliable processors have the same value at the start of an inter-
val, then all the reliable processors should agree on that value at the end of that
interval.

(2) Finite Disagreement: The number of times that reliable processors disagree is at

most C, a constant depending only on the number of processors and the number of



faulty processors.
This requirement naturally suggests using a self-stablizing algorithm for this prob-

lem. The goal in this problem is to reach agreement in such a way that

. # disagreements in N tries =0
o N -

Self-stablization is achieved by starting with a fully connected network and each reliable
processor doing a stabilizing step which consists of detecting faulty processors and
disconnecting itself from those processors that it deems as being faulty. The algorithms
given here assure that whenever the system is in an illegal state, i.e., whenever the reli-
able processors decide on different values, the stablizing step guarantees that in the next
try the system will have a smaller probability of being in an illegal state. The system is
self-stabilizing in the sense that the state of the system monotonically converges to the
legitimate state, there is no decentralized control, and, although each processor can
directly communicate with every other, the state information thus obtained may be cor-
rupted due to the arbitrary behavior of faulty processors, so that it has only a local view
of the system state. This approach shares some insight with pseudo-self-stabilization
[Bur89b] in that the system is allowed to deviate from the legitimate state once it has
entered the legitimate state from an illegal state as long as a stabilizing mechanism works
to force the system back to its legitimate state. They differ in that in our approach the
probability of deviating from legitimate state will become smaller after each deviation

and eventually converge to zero, while pseudo-self-stabilization does not enforce this

property.

processorp :

traitor_set, = @
repeat attime T, 2T, - - -

round 1
broadcast (v, )
receive (vs)
if p cannot receive p; ’s message —
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traitor_set, = traitor_set, U{i )
end if
VP:= (vlo Lt |vﬂ)

round 2

broadcast (V)

receive (Vs)

fori:=1ton do
d;:= select_ majority (V;(i) | 1SjSnAj#i}
Spi)={j | Vp(i)#V;(i))
if |S,(i)[2t+1 — traitor_setp:= traitor_set, (i } end if
decision,, = majority (dy, " * - 4n)

forever

select_majority(vy,va, " Vn-1)=
fori:=1ton-1do
if vi="‘faulty’’ — v;:= DEFAULT end if
if viive vy, - ,v,,__llAcount(v)Zl—n/Z] -v]
Avivelvy, - ,v,,_ll/\count(v)zrnﬂ] — DEFAULT
end if

Algorithm 1.

The algorithm given above works synchronously. At every time interval T,2T,...,
the processors in the system try to reach agreement by using two rounds of message
exchanges: (1) each processor sends out its own value, (2) each processor sends out all
the values it receives during the first rouhd. Based on the values it receives, each proces-
sor can determine whether a processor is faulty, in which case it disconnects itself from
that processor and discards the value sent by that processor. A total of O (n 3) message

bits are exchanged in each attempt. The following theorem is proved in [Zha87].
Theorem. Algorithm 1 assures Mostly Byzantine agreement, if n24r.

This algorithm converges very fast in the sense that each faulty processor can only cause
at most one disagreement, so that the system will be in the illegal state at most ¢ times in
the presence of ¢ faulty processors. We can also get another algorithm with a smaller

redundancy but with a slower convergence speed by replacing the select_majority
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function with the one given below.

processor p :

select_majority (vy,vy, ** Vn_1) =
F=(v; | vi=""faulty’’)
Vi= {vli P ’vn—l}—'F

f=I|F|
if f 22t+1 — DEFAULT ||
f <2t+1A3viveV acount (v)2[ (n—f )/2] —v 0
f <2t+1A3v::veV acount (v)2[ (n—f /2] —=DEFAULT

end if

Algorithm 2,

Theorem. Algorithm 2 assures the Mostly Byzantine agreement if n 23t +1 [Zha87].

For #>8, each processor can cause at most £/2 disagreements and when n >4t , this algo-

rithm has the same convergence speed as the first one.

IV. Inherent fault tolerance (IFT)

Self-stabilization has a major purpose of tolerating faults, i.e. any transient state
failure can be inherently tolerated by the program. A notion related to this ability would
be tolerance of permanent failure to execute some statements. As with the self-
stabilization approach, we want the fault tolerance ability to be embedded in the pro-
gram. This yields the notion of inherently fault tolerant programs. We will give a formal

model of inherent fault tolerance in the following.

4.1. IFT Model ;

Here, we will use the notations introduced in the system model. Also, let T(P,s)
denote the time required to reach any state in fp (P s) by starting from a state s. The
execution model of the program is that each statement pi in program P is assigned to a
processor and processors run in parallel either asynchronously or synchronously

corresponding to the execution sequencing of P .



19

f ~fault tolerance: A program P={p; 11sisn .} is f -fault tolerant, where 0sf <1, iff
VPR P and | Py |2 (1=f )xnp , we have Vs :: fp(Ps.s)€ FP(P).

Remark. Chandy and Misra have modeled Byzantine failures by removing all equations
involving variables in the write-set of malicious processors from the always section of a
Unity program [Cha88] [Gou89]. The removal of statements in the definition of f -fault
tolerance corresponds to a fail-stop behavior. It is particularly interesting that Unity pro-

vides a common framework for modeling these different types of processor failures. [
IFT program. A program P is inherently fault tolerant if it satisfies the following:

(1) Implicit fault tolerance: Ap, p € P, such that p has fault detection and/or error
recovery functionality;

(2) Fault coverage: P 1s f -fault tolerant, and f >0;

(3) Performance constraint: VP, Py P cPycP,wehave Vs, T(P1,s)>T(P2s)if

T(P2,8) <ee.

The definition implies certain desirable properties, such as the absence of explicit
failure detection or recovery con'iputations which, in turn, eliminates potential communi-
cation overhead; no performance penalty or excessively redundant hardware cost since
the performance constraint requires that extra processing power should be used to
increase the performance during fault free time. However, the definition still leaves open
a wide range for the quality of an IFT program. For example, the robustness of an IFT
program is determined mainly by its f value while its performance is affected by

T (P4,5) ! T(P2,s) relative to|P|/|Py|forall PycPacP.

4.2. Some Examples of IFT Programs

Dijkstra’s cyclic relaxation algorithm [Dij73] is an example of inherently fault
tolerant programs. A simplified version of the problem is as follows. A set of points are
scattered around the circumference of a circle of radius 1/(27). Each point can indepen-

dently make a sequence of changes in its position, at all times knowing only the distances
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from its nearest clockwise neighbor and anticléclcwise neighbor. What moves should
each point make so that eventually all the points are equidistant from both their nearest
neighbors?

Let the points be 0, 1, -+, n—1, so that point i is between points { ©1 and i®1,
where © and @ are subtraction and addition operations modulo 7, respectively. Let the

clockwise distance along the circumference between neighboring points i and i @1 be x;.

Then, we have ’zx,:l. The algorithm proposed by Dijkstra is
I

for process p; :
50 Asate (X Gk X))
5. 1i(- 3 b i

If any p; is removed, the program will still be able to achieve the goal because there is a
sufficient overlap in the responsibility of processors in achieving the system goal in a
self-stabilizing manner.

Other examples of inherently fault tolerant programs are a two dimensional robot

control program [Bas88] and a robust sorting network [Rud85].

V. Theoretical Aspects of Self-Stablization and IFT Programs

Two theoretical aspects which are rather important in any system model are correct-
ness proof and existence properties. Program correctness proof includes termination
proof and proof of partial correctness. The termination proof of an asynchronous pro-
gram is especially difficult since statements can be executed at any time. We will discuss
some techniqueé which help with this task in section 5.1. Also, whether a solution in the
system model exists for each problem is a fairly fundamental issue. The requirement of
decentralized flavor in self-stabilization and IFT control programs results in the possibil-

ity of nonexistence of solutions for some problems. We will address this existence issue

in section 5.2.
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5.1. Termination Proof of Asynchronous Programs

The major property of an asynchronous program is that the statements of the pro-
gram can be executed at any time instance. This property increases the fault tolerance
ability of the program since transient processor failures (i.e., failure to execute a state-
ment for a finite duration) can be implicitly tolerated. However, the disadvantage of this
property is the difficulty of proving the correctness of the program. The correctness
proof of a program with nondeterministic or synchronous parallel execution can be done
much more systematically due to execution constraints that allow it to be decomposed
into fixed execution Steps. Nondeterminism actually inherits the same fault tolerance
advantages stated above, and it has some well-developed proof techniques [Man80]
[Cha88]. Nevertheless, nondeterministic execution is not a desirable model for parallel
programming environment due to synchronization overhead and one-at-a-time execution
semantics. Moreover, the performance constraint of the IFT model requires performance
improvement when extra processing units are provided. Thus, in order to take advantage
of the simpler program proof in the nondeterministic model, we can use them only as a
vehicle to design and prove algorithms while requiring the algorithm to be executed
asynchronously and in parallel. To achieve this, we need to develop 2 model to identify
and prove the correctness of rules for transforming nondeterministic computations to
equivalent asynchronous parallel computations. A step in this direction is the following
theorem which states the conditions required for the correctness of an IFT program to be
preserved under such a transformation. Here, s denotes the current program state, Vi(s)
denotes the rate of change in the state due to the ith statement, and V (s) denotes the

resultant rate of change in the state.
Linearity condition: V (s)= 2 ¢ (s)V;i(s), f&a,-(s)>0.
1= =

Theorem. [Bas88] For a program satisfying the following conditions:
(1) the linearity condition

(2) Vi:lsisn: V; is continuous, and
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(3) Vi:1<i<Sn:: either

(a) Vi (s)=X.Bj(s)V;(s), Bj(s)20, or
J#
(b) (Vr:: V; (r)=i‘l3,- Vi),
J=

continuous nondeterministic termination => continuous asynchronous parallel termina-
tion.

The above theorem is useful for proving the termination of asynchronous continu-
ous parallel programs which is generally the characteristic of process-control systems,

e.g. temperature, pressure, and rate of flow of reactant through a pipe, speed of robot, etc.

The continuous version of the cyclic relaxation algorithm introduced in section 4.2
converges even when the points move in parallel. To see this let us consider each of the
conditions one by one. The state space is n -dimensional, with xg, * ", Xp—1 being the n
dimensions. Assume that the rate of change induced in the state by point p; is V;.

(1) The movement of each point has components along two dimensions and each
dimension has components from only two points. Consider dimension X;. LAt
Vo1 and V;; be the rates at which points p; o1 and p; affect x;, with a positive
value meaning that x; is being increased and vice versa. Clearly, the resultant rate
of change in x; is Vig1i+Vi i, SO that the linearity condition is satisfied.

(2) Each V; must be continuous in the state space. One possibility is to choose Viito
be proportional to (x;=x; o1 andV; ;o110 be proportional to (x; g 1=Xi ).

(3) If V; has magnitude 0, then it satisfies condition 3(a). If it has a nonzero magnitude,
then it must have a nonzero magnitude along both x; g1 and Xi. Since it can have

components only along these two dimensions, therefore it satisfies condition 3(b).

Finally, it is possible to prove that the cyclic relaxation algorithm converges under con-
tinuous nondeterministic execution. (A proof of nondeterministic convergence is given
in [Bas88].) Hence, from the above theorem we can conclude that the continuous version

of the algorithm converges even under asynchronous parallel execution.
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To see more clearly what the three conditions in the theorem mean, let us consider
examples where these conditions are violated one at a time and where there is no parallel

termination.

Linearity condition. Most physical systems satisfy this condition. However, consider
the system shown in Figure 1. There are two iron bars whose rightmost and leftmost tips
are labeled A and B, respectively. The goal of the system G is to make x4 =xp, where
x4 is the x-coordinate of point A and xp that of point B. There are two actuators,
namely, switches a and b, which can allow a current to pass through the coil around
blocks A and B, respectively. If only one of the switches is tumed on, then it induces a
magnetic force which will attract the other bar. Hence, nondeterministic control can
achieve the goal. But, if both the switches are turned on, then the bars have opposite

A

polarities and hence repel each other, so that parallel actions fail to achieve the goal.

N i

(e n i A (Vs AL A LA
A
VARV ALV ARV V/ v U U U U

Figure 1. Violation of Linearity Constraint.

Continuity condition. Consider three pbints A,B,and C with an X oneach of A and B

(see Figure 2). It is required to reach a state in which there is an X on C and an X on

either A or B. A nondeterministic program can be:

point A
if thereisanX onB — movemy X to C []
there isno X on B — skip
end if

point B :
if thereisanX onA - movemy X toC []
there isno X on A — skip
end if
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This has continuous nondeterministic termination since the moment either A or B
moves, the other point will not move. However, the goal may not be achieved if the
statements are executed in parallel since both the points may move toward C simultane-

ously.

OC
A @® B

Figure 2. Violation of the Continuity Constraint.

Dependence condition. This condition means that the system will terminate starting
from a state s provided that the velocity vectors are related. Specifically, each V;(s)
should either be expressible in terms of the other vectors at s or V; at all points should be
expressible in terms of the vectors at 5. An example which satisfies the linearity and

continuity conditions but not the dependence condition is the following (see Figure 3).

Ay

0.1)

& L
I (0,0)

" Figure 3. Violation of the Dependence Condition.

Two processes p; and p, control a point with coordinates (x,y). The goal of the

program is to make y 21. The velocity vectors are

Vik,y)=i+(x |[+|y l)]i_
Valx,y)= =i+ (|x |[+]y Dj

Suppose the point is located at (0,0). Then, continuous nondeterministic control will
achieve the goal since any finite shift from the origin will cause an ever increasing com-

ponent along the y-coordinate. However, the system does not terminate under parallel
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control since V1(0,0+V2(0,0) = 0. Condition 3(a) is not satisfied since
V 1(0,0)%B2(0,0)V2(0,0) for some B2(0,0)20. Similarly, condition 3(b) is not satisfied
since velocities at all other points have a nonzero y component, while the vectors at (0,0)

have a zero y component.

If a problem cannot have a solution in the nondeterministic model which satisfies
the properties required to guarantee the correctness under parallel execution, then we
need to have other analysis to help prove the correctness of parallel execution. Possible
problems in transforming from nondeterministic computation to paralle] computation are
oscillation, duplication, saddle points, etc. Some approaches such as randomized algo-

rithms [Rab76] and simulated annealing [Lar87], can be used to resolve these problems.

5.2. Existence of Decentralized Solution

Both self-stabilization as well as inherent fault tolerance require a certain local deci-
sion making property for each statement. Consequently, a basic question for any given
problem is whether there exists a decentralized solution for it. In this section we present
one condition which guarantees the existence of a decentralized algorithm for process
control systems having continuous state spaces. Let us give the problem model in the

following.

As we defined in section 2, a system consists of three entities (P ,X ,S). Here, we
will have some extra entities -- a Set of actuators A and a set of sensors B, i.e. the system
will be exprcsse;i by (P,X,5,A,B). The sensors provide the state information of the
system, ie., Vb € B,b:S =R Is|, and the actuators are devices which cause the actual
state transitions, i.e. VaecA,a:SxC, >SS, where C, is the set of commands which can
be issued to the actuator a. Each statement pi€P , where p;: § — S, will get the infor-
mation about the state space S from the sensors and cause state transitions through the
actuators. Let b; denote the set of sensors which p; uses to access information and a;

denote the set of actuators which p; uses to cause state transitions. Here, we require
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a; Na; = for i#j in order to ensure that no cdnﬂicting commands can be issued to an
actuator by different statements. Requiring a fixed set of actuators constrains the system
decomposition and simplifies the definition and proof of existence of the decentralized
solution. Simple but tedious generalization can be derived from the results obtained in
the constrained system to the system which allows decomposition into arbitrary sets of
actuators.

A centralized solution to a problem with a fixed set of actuators is to have only one
statement which gets state information from all sensors and determines the actions of all
actuators. On the other hand, a decentralized solution requires each p; to determine
independently the actions of the set of actuators g; it controls. At least two statements
should exist in the system.

In the following, we will define two properties for a system state space, namely, free
space system and convex space system.

Reachable state space. A state space sg is the reachable state space of system
(P,X,S,A,B) starting from state s iff

(1) sesg,and

(2) Vxesgp,aeA,ceC,:a(x,c)esg.

The reachable state space from state s are the states which are reachable by simply issu-
ing any allowed commands to any actuator. Note that some states which do not satisfy
the system state space constraints can still be in the reachable state space.

Free space. A system with state space S is a free space system iff VseS, we have
Sg =S.

Traversable trajectory. A trajectory ¢ consisting of a sequence of states

<50,51," " " Sn >, S;i €S, is traversable iff

Vi:0<i<n: (3(a;i,ci): aieAncieC, i ai(si,ci =5i1).
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In other words, a traversable trajectory is any trajectory in the state space which can be

traversed by the actuators.

Approaching trajectory. A trajectory f consisting of a sequence of states
<5051, * * Sn>,8i€S, is an approaching trajectory from s to s, iff Vsi,Si+1 €1, We

have D (s; ¢ )>D (s;+1,t ), where D (x,y) denotes the distance between states x and y .

Convex space. A system space S is convex iff Vs;,s; €S, the shortest trajectory

between s; and s; is a traversable trajectory.
The following theorem about the existence of decentralized algorithm can be proven.

Theorem. A decentralized nondeterministic algorithm exists for a problem if it is a con-
tinuous system with a convex and free system space, and it satisfies the linearity condi-

tion.

The proof of this theorem is quite straightforward, and we will omit it here. Actu-
ally, the theorem will hold even if the convex space requirement is replaced by the fol-
lowing: for any two states in the state space, there exists an approaching trajectory which
is traversable by the actuators. However, it is much easier to examine whether a problem

satisfies the convex space requirement.

From the above theorem, we can conclude that the cyclic relaxation problem has a
decentralized solution. To see this, consider the free space for a three-point problem
(Figure 4). The free space consists of all and only points such that x+y+z = 1. Clearly,
any path in this state space can be traversed by the three actuators. Hence, this problem
has a decentralized nondeterministic solution. Another problem with a convex free space
is the two dimensional robot with three degrees of freedom shown in Figure 5(a). A
decentralized IFT control algorithm for this mechanism with the goal of positioning T on
P appears in [Bas88]. The introduction of a single point obstacle O (Figure 5(b)) causes
the free space to be non-convex. Whether a decentralized solution exists for this case is

an open problem.
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Figure 4. Free Space for Three-Point Problem.
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(a) (b)
Figure 5. A Robot Control Problem.

5.3. Existence Issues with Conditional Subgoals

In order to achieve the system goal G, each p; in P will act independently to reach
its own local subgoal. These subgoals can be denoted by £1,82, ", 8. where each g;
corresponds to p;. As with the system goal, G, each g; is a Boolean function of the state
of the system, i.e., if s is the goal state of Pi, then g;(s) holds. These subgoals should
satisfy G =g 1Agan - Ag,. Depending on the constraints on the predicate of the
subgoals, these may be either conditional or unconditional subgoals. For a conditional
subgoal, the processor tries to satisfy different predicates depending on the value of cer-
tain state variables,

8i = if condition—g;, [| ~condition—g;, end if,

where condition, g;1, gi, are atomic propositions (i.e., a Boolean function without any
Boolean connectives). If we constrain the subgoal of each statement to be an atomic pro-
position, i.e., Vi, g; is an atomic proposition, then we will call the subgoal an uncondi-

tional subgoal.



St

The use of conditional subgoals, increases the set of problems amenable to decen-
tralized decomposition. Thus, it is helpful to consider conditional subgoal decomposition
when an unconditional subgoal decomposition is not possible. Here, we give an example
which does not satisfy the convex free space constraint, but has a decentralized solution

using conditional subgoals.

Consider the system shown in Figure 6. The goal is to turn the vehicle BA into
pathway P 1P,. The vehicle can move along line BA , rotate point B around point A, and
rotate point A around point B. We assume that the state shown in Figure 5 is the last
stage in a sequential decomposition for preparing to turn so that point A enters pathway

P P, before point B. The turn can be made only if the length of the vehicle is less than

‘l(x+d)2+cz(1+d/x)2, where x =(c2d)V3, ¢ =length of P P, and d = length of P,P 3.

Y

P

d 3

TAS A A SN SSARRNAARAN X
B P‘ A

Figure 6. A Turning Problem.

The conditional subgoals for all controllers are given in the following.

LBA:
if P1g AB —X,=Xp, (]
P1€AB — Yp=Yp,; await(Xy=Xp,)
end if

RB:
if P1g AB AX, =Xp1 —Y4 2YP1 0
Pi1eABAY,>Yp — await(YB=Yp,); X4 =sz 0
P1eABAY =Yg =Y, BYPI
end if

RAJ
ifAcPoP3 — Yp=Yp, ]
AgPyP3>Yp=Y,
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end if

This algorithm can tolerate the failure of either the linear motion or the rotational

motion around point A. There are three cases:

(#) 1If all the three motions are available, then the trajectory of point A is along line
P3P 3 while that of point B is along line P3P 4. This is a relatively fast way of mak-
ing the tum.

(i1) If the linear motion is not available then the turn can be made only if length AB <
length P P;. In this case, the controller for the rotational speed around point A first
moves B till Yp=Y,. Then, the two rotational controllers move the vehicle side-
ways through pathway P ;P,.

(7ii) If the rotational motion around point A is not available then the trajectory of point

A is along line PP 3 while that of point B is given by

y =AB cosh“l(-"z—B)— VAB 2-x2

VI. Conclusion

In this paper, we have introduced different classes of programs. Based on the
required properties of the program fixed point relative to the program statements, we
have introduced self-stabilizing programs and inherently fault tolerant programs. Self-
stabilizing programs have the property of reaching the goal state irrespective of the
current state, which implies tolerance of transient failures. In the Unity model [Cha88],
this corresponds to a program without an initially section. Inherently fault tolerant pro-
grams have the characteristic of reaching the goal state in spite of the removal of certain
fraction of the statements. This property implies tolerance of fail-stop permanent

failures.

Both self-stabilizing and inherently fault tolerant programs can be established under
nondeterministic, asynchronous parallel, or synchronized parallel models. We have also

introduced the pros and cons of programs in these models. Asynchronous parallel and



-24 -

nondeterministic models have the property that the statements of the program have no
precedence relations, which implies several desired properties such as automatic toler-
ance of transient failures. On the other hand, any parallel model has the advantage of
enhanced performance under a parallel environment. Thus, asynchronous parallel is the
most desirable programming model.

As we discussed in section 4, a property that both the self-stabilizing and inherently
fault tolerant programs should have is decentralization. Limited state references and
independent decision making eliminates the communication overhead which is important
in parallel systems, and generally, the property also implies a simpler software which
facilitates software reliability. We have discussed the existence conditions for decentral-
ized self-stabilization and IFT solutions in the paper.

From the discussion given in this paper about these different properties of programs,
we can use a diagram to display the relationship between them. The diagram in Figure 7

shows different sets of programs with different properties.

A = the set of programs which can reach the goal by
having their statements executed asynchronously

N = the set of programs which can reach the goal by
having their statements executed nondeterministically

S = self-stabilizing programs

I = inherently fault tolerant programs

D = decentralized programs

Figure 7. Classes of Programs

As we have discussed, all the properties displayed by the classes of programs given
above are desirable. Thus, an ideal program in a parallel environment would be a pro-

gram that satisfies the notion of self-stabilization and inherent fault tolerance and its
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statements can be executed asynchronously and it is decentralized.
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