
Correctness Conditions for Randomized Shared
Memory Algorithms

Philipp Woelfel

Department of Computer Science, University of Calgary, Canada

In an asynchronous shared memory system, processes communicate by apply-
ing operations on shared base objects. From an algorithm designer’s perspective
it is ideal if the operations on these objects are atomic, meaning that each such
operation happens instantaneously. However, objects provided by systems are
typically not truly atomic, and neither are objects implemented from base ob-
jects. As a result, if multiple processes concurrently execute methods on such
objects, the set of all possible outcomes is difficult to predict.

For almost two decades, linearizability, defined by Herlihy and Wing [4], has
been the gold standard among correctness conditions for non-atomic objects. It
guarantees that any possible result that can arise from an interleaving of pro-
cesses using linearizable operations could arise if the operations were atomic.
Hence, the worst-case behaviour of algorithms can be analyzed under the as-
sumption that all operations are atomic, even when they are only linearizable.
For that reason, the terms linearizability and atomicity have often been used
interchangeably (see for example [5]).

Golab, Higham, and Woelfel [2] observed that linearizable implementations
do not preserve the probability distribution of the possible results if we replace
atomic objects used in a randomized algorithm with implemented ones. An ad-
versary, which schedules process steps, can “stretch out” a method call that was
originally an atomic operation, and inspect the outcome of other processes coin
flips before allowing the method call to be completed. As a result, replacing an
atomic object with a linearizable one in a randomized algorithm amounts to in-
creasing the power of the adversary. In order to be able to employ the power of
randomization in shared memory algorithms, we need to devise new correctness
conditions that eliminate the deficiencies of linearizability. In this talk the state
of the art [1–3] of finding such correctness conditions will be presented.

References

1. O. Denysyuk and P. Woelfel. Wait-freedom is harder than lock-freedom under strong
linearizability, 2015. Manuscript (submitted).

2. W. Golab, L. Higham, and P. Woelfel. Linearizable implementations do not suffice
for randomized distributed computation. In Proc. of 43rd ACM STOC, pp. 373–382.
2011.

3. M. Helmi, L. Higham, and P. Woelfel. Strongly linearizable implementations: pos-
sibilities and impossibilities. In Proc. of 31st PODC, pp. 385–394. 2012.

4. M. Herlihy and J. Wing. Linearizability: A correctness condition for concurrent
objects. ACM Trans. Program. Lang. Syst., 12:463–492, 1990.

5. N. Lynch. Distributed Algorithms. Morgan Kaufmann Publishers Inc., 1996.


