WS35

%UNLV%

O SO o o0

PROCEEDINGS OF
THE SECOND WORKSHOP
ON SELF-STABLIZING
SYSTEMS

May 28-29. 1995

Technical Report
Department of Computer Science
University of Nevada. Las Vegas

Box 454019
Las Vegas. NV 89154-1019

PREFACE

The topic of self-stabilizing systems has received growing attention in recent years. The
interest in self-stabilization reflects its importance in existing distributed systems. It allows
automatic recovery following transient faults and the possibility of starting a distributed
system without a global starting signal. In 1974, E. W. Dijkstra published the pioneering
paper in this field, presenting self-stabilizing mutual-exclusion protocols. The progress since
1974 proves that the self-stabilization paradigm is not tied solely to the mutual-exclusion
task. A (short) partial list of the tasks that are currently discussed includes: topology
update, clock synchronization, leader election, graph algorithms, and flow control.

Self-stabilization is applicable to many tasks in communication networks and multiproces-
sor computers. In fact, some protocols have been designed to be self-stabilizing, without
identifying them as such, simply to meet operational requirements. We believe that the
growing knowledge of self-stabilization should become widespread among both practition-
ers and theoreticians, so that we can all benefit from robust distributed systems in the
future.

The papers in this volume were contributed for presentation at the Second Workshop on
Self-Stabilizing Systems, held May 28-29, 1995, in Las Vegas, Nevada, USA. The workshop
is sponsored by the Department of Computer Science, University of Nevada, Las Vegas and
the Information Science Research Institute, University of Nevada, Las Vegas. The papers
were selected by the program committee according to their relevance to the workshop and
quality. Submissions were not formally refereed and authors are expected to submit their
papers to fully refereed journals. In particular, authors are encouraged to submit the full
version of the paper to the Chicago Journal of Theoretical Computer Science that will
dedicate a special issue to selected papers presented at the workshop.

The program committee would like to thank all the authors who submitted extended ab-
stracts for consideration. We would also like to thank William W. Wells (Dean, College of
Engineering, UNLV), Lawrence L. Larmore (Chairman, Department of Computer Science,
UNLV), and Thomas Nartker (Director, Information Science Research Institute, UNEV)
for their support in sponsoring the workshop. Last, but not least, we thank the following
colleagues for assistance in evaluating the submissions: Eyal Adi, Nian-Shing Chen, Jorge
A. Cobb, Michael Franz, Haim Gurin, Furman Haddix, Gene Itkis, Alexander Keizelman,
Galia Kopelman, Yaacov Kuperstein, Claudia Lerner, Chenadan Lin, Tomer Lifshitz, Leon
Meister, Boris Meltser, Marco Schneider, Aharon Tubman, and Lih-Chyau Wuu.

Shlomi Dolev (Program Chair)
Ajoy K. Datta (Local Arrangement Chair)
Las Vegas, May 1995

Electronic information may be obtained through:
URL: http://www.cs.bgu.ac.il/~dolev/WS395
URL: http://www.unlv.edu/'da.tta./wss.html

Program Committee

James E. Burns (Bellcore)

Shlomi Dolev (Ben-Gurion Univ.)

Mohamed Gouda (Univ. of Texas)

Ted Herman (Univ. of Iowa)

Shing-Tsaan Huang (Tsing Hua Univ. Taiwan)
Janos Simon (Univ. of Chicago)

John Spinelli (Union College)

ii

Participants

Amisaki. Takashi (ami Qeis.shimane-u.ac.jp)
Arora. Anish (anish@cis.ohio-state.edu)
Beauquier, Joffrov (jb@lri.fr)

Bourgon. Brian (bourgon@nevada.edu)

Burns. James E. (burns@nova.bellcore.com)
Cherkaoui. Omar (cherkaoui.omar@ugam.ca)
Datta, Ajoy Kumar (dattadcs.unlv.edu)

Debas. Oliver (debasalri.fr)

Deffaix. Chris (deffaiz@lif.cicrp.jussieu.fr)
Delaet. Svlvie (delaet@lri.fr)

Derby, Jerry (jderby@nevada.edu)

Dolev. Shlomi (dolevacs.bgu.ac.il)

Gacs. Peter (gacsdes.bu.edu)

Gewali. Laxmi P. (laxmi@cs.unlv.edu)

Ghosh. Sukumar (ghosh@cs.uiowa.edu)

Gouda. Mohamed G. (gouda@cs.utexas.edu)
Gupta. Arobinda (agupta@cs.uiowa.edu)
Herman. Ted (hermandcs.uiowa.edu)

Hoover. Jim (hoover@cs.ualberta.ca)

Huang, Shing-Tsaan (sthuang@nthu.edu.tw)
Johnen. Colette (colette@lri.fr)

Kakugawa. Hirotsugu (kakugawa@se.hiroshima-u.ac.jp)
Kranakis. Evangelos (kranakis@scs.carleton.ca)
Kutten. Shay (kuttendwatson.ibm.com)
Lawrence. James (jamesel@cs.unlv.edu)

Lin. Chengdian (/inG@cs.uchicago.edu)
Masuzawa, Toshimitsu (masuzawa@is.aist-nara.ac.jp)
Schneider. Marco (marcodes.utexas.edu)

Shukla. Sandeep Kumar (sandeep@fes.albany.cdu)
Simon. Janos (simon@es.uchicago.edu)

Tokura. Nobuki (tokura@ics.es.osaka-u.ac.jp)
Tsujino. Yoshihiro (tsujinoQics.es.osaka-u.ac.jp)
Varghese. George { varghese daskew.wustl.edu)
Yen. I-Ling (yen deps.msu.edu)

Shimane University

The Ohio State University
L.R.I. University of Paris-Sud
University of Nevada, Las Vegas
Bellcore

Universite du Quebec In Montreal
University of Nevada, Las Vegas
LRI Paris SUD

LAFORIA Paris 6

L.R.I. University of Paris-Sud
University of Nevada, Las Vegas
Ben-Gurion University

Boston University

University of Nevada, Las Vegas
The University of Towa
University of Texas at Austin
University of lowa

University of Towa

University of Alberta

National Tsing Hua University
L.R.I. University of Paris-Sud
Hiroshima University

Carleton University

IBM

University of Nevada. Las Vegas
University of Chicago

Nara Inst. of Sci. and Tech. (NAIST)
University of Texas at Austin
SUNY - ALBANY

U of Chicago

Osaka University

Osaka University

Washington University in St. Louis
Michigan State University

¥,

» i'T'fF'r"r—‘!Js?' b, s

S W i1 gt {4} #7
B ri-:zmh‘i 40 st T 1011
st 2ml aberd? Ia Sz
it
ey ﬂ BLTEC T PRT I S
*.,_\;_3,—.-,‘:,(aed s el N i aiE Mg
TR bl 1T
QSR (CEP AT
- _'i?ﬂii i f’-fichl gt oLl
o Yo SaiEvais”)
't’-‘-f*-ﬁ“d!i i Hﬂi S e
T
“_ﬁgﬂ\‘“f:wd bl in s,r_i."e": $o4ir |

i .!iflld'{'."fl:{',‘i o

I

o T QRN T Ey A 1Y fl;r”q."ff' 1
*.‘; S oy Afeesit

VE2IAV ol bies
TR TTE A TR TR L PRI St
¥ A M.Li‘ FETRA
fil: Is-"‘:";alp Py ¥
.L\ﬁhl } ::—u; 0¥
dFErain’t sdgal)
sfob] L%
L¥ S g

it

RERR AR S e T

R L O LT -"l'-uz;,s;;p{

i e d pan s

R s 1 unysblelt!

“'\t_g.i- JI F" 7 :all

R B S T e TS R T T 9
R T AN 1--,3%1 gt i nf'J SHETE
[--,‘\.- 7% .ﬂ'ﬂt,‘f 5

i5 '.ﬁ =

Hai el & u;‘ﬂ\s,,.« :

S ﬂh‘\h 'ﬁ{lL s !q’ﬂg 411

“ﬂﬁu - -lv. 4 r' 1
baspind Gope. gl
: i[O -u:—ﬁ.?i‘-"r i
ATR RIS (¥ R R C SRy

Lﬁ aveeantaly S an g
h“ J*'l’ﬂn“éﬂﬁsrnai AT ‘.;(tfi“(.r

LT -'ﬁ'—‘s" §aL '.‘! T n'm’é",

ok, l;muw-

‘-:xk:-ﬁg i Az’:f-f-"?ﬂ cg_-.e l'.,.s,’
*Z.sﬁ- ;x-m ey m'mm. M igras) iHseld

Ty H‘H-"* i n-«u‘?‘NrbL ‘!-bcnfa EHAH, haoD
Ay gy bRt H\Jﬂuvm o strgido f. .“,!\'[H‘é'!
Vit WMC\:M‘." Vi EVEgHadrt BT ,}Lu?lf, -

L adl vmhmr ¥ -‘Q o .wa &t H ma- ;

it *=“‘-*3'§-’ ﬂ-"w-!ﬁf}.l-
il dergeiiinel
19, TEABLYTES w&".,mi'f;.'a'g; 3 “-; rlh.l:‘.' .

§

vl 3L =t AR mn} 1,;!.::11"}*5}' S T
W e ms ey el ahis .m s

e gt e MUl) Al gubbine® HEE
{__(T‘fsg:.“.. \L,n F g ki v | sl ,q.%;fiﬁ?

O piedn i mapsbS
vt T
& 1-:*1,.;".{“.‘ i g) ‘l;_"'lii‘_'?f?*-"
N T e

B, LAy 'g_ﬂ\-‘--',“ I 3 1 'ii:: .'-.:-3“:1'.‘!,..;‘.'6

i u:i \ir" =ty :','ft'-.u.'-: F
B T | S S I G

CONTENTS

May 28, 1995 3:30 pm-5:00 pm SESSION 1

A Fault-Tolerant and Self-Stabilizing Protocol for the Topology Problem 1.1-1.15
Toshimitsu Masuzawa Nara Institute of Science and Technology

Maximum Flow Routing 2.1-2.13
Mohamed G. Gouda and Marco Schneider The University of Tezas at Austin

SuperStabilizing Protocols for Dynamic Distributed Systems 3.1-3.15
Shlomi Dolev Ben-Gurion University
Ted Herman University of lowa

May 28, 1995: 5:15 pm—6:45 pm SESSION 2

Space-Efficient Distributed Self-Stabilizing Depth-First Token Circulation 4.1-4.15
Colette Johnen and Joffroy Beauquier Universite de Paris-Sud

A Self-Stabilizing Distributed Heap Maintenance Protocol 5 5.1-5.13
Brian Bourgon and Ajoy Kumar Datta University of Nevada, Las Vegas

Asynchronous Fault-Tolerant One-Dimensional Cellular Automata 6.1-6.13
Peter Gacs Boston University

May 29, 1995: 9 am - 10:00 am SESSION 3

Observations on Self-Stabilizing Graph Algorithms for Anonymous Networks 7.1-7.15
Sandeep K. Shukla, Daniel J. Rosenkrantz and S. S. Ravi
University at Albany - State University of New York

On the Self-Stabilization of Processors with Continuous States 8.1-8.15
H. James Hoover University of Alberta

May 29, 1995: 10:15 am—11:15 am

SESSION 4

Self-Stabilizing Clock Synchronization in the Presence of Byzantine Faults
Shlomi Dolev Ben-Gurion University
Jennifer L. Welch Tezas A&M University

Possibility and Impossibility Results for Self-Stabilizing Phase Clocks on
Synchronous Rings
Chengdian Lin and Janos Simon University of Chicago

9.1-9.12

10.1-10.15

May 29, 1995: 1:00 pm -2:30 pm

SESSION 5

Self-Stabilizing Dynamic Programming Algorithms on Trees
Sukumar Ghosh, Arobinda Gupta, Mehmet Hakan Karaata,
and Sriram V. Pemmaraju University of Towa

Self-Stabilization by Tree Correction
George Varghese Washington University in St. Louis
Anish Arora Ohio State University
Mohamed Gouda The University of Texas at Austin

Formal Derivation of a Probabilistically Self-Stabilizing Program: Leader
Election on a Uniform Tree

Takashi Amisaki Shimane University

Yoshihiro Tsujino and Nobuki Tokura Osaka University

iv

12.1-12.15

12.1-12.14

13.1-13.14

May 29, 1995: 2:45 pm—4:15 pm SESSION 6

Uniform Randomized Self-Stabilizing Mutual Exclusion on Unidirectional
Ring under Unfair C-Daemon 14.1-14.13
Hirotsugu Kakugawa and Masafumi Yamashita Hiroshima University

Optimum Probabilistic Self-Stabilization on Uniform Rings 15.1-15.15
Joffroy Beauquier Universite Paris sud
Stephane Cordier Universite Paris 6
Sylvie Delaet Universite Paris sud

Self-Stabilizing Ring Orientation Protocols 16.1-16.14
Ming-Shin Tsai and Shing-Tsaan Huang National Tsing Hua University

May 29, 1995: 4:30 pm —5:30 pm SESSION 7

An Optimal Self-Stabilizing Algorithm for Mutual Exclusion on Bidirectional
Non Uniform Rings 17.1-17.13
Joffory Beauquier and Oliver Debas Universite de Paris-Sud

A Highly Safe Self-Stabilizing Mutual Exclusion Algorithm 18.1-18.13
I-Ling Yen Michigan State University
Farokh B. Bastani University of Houston

—

—

d =3 T3 =3 =

Paper Number 1

A Fault-Tolerant and Self-Stabilizing Protocol for the Topology Problem

Toshimitsu Masuzawa

A Fault-Tolerant and Self-Stabilizing Protocol for the Topology Problem!

Toshimitsu Masuzawa
Graduate School of Information Science
Nara Institute of Science and Technology
8916-5 Takayama, Ikoma, Nara, 630-01, Japan

e-mail: masuzawa@is.aist-nara.ac.jp

Abstract We investigate the possibility of designing protocols that are both self-stabilizing and fault-tolerant, in
asynchronous model of distributed systems. It has been known that no such protocols exist even for fundamental
problems, including the counting problem (i.e., the problem to determine the number of processors) in a ring network.
In this paper, we define a more generalized problem called the topology problem in faulty networks (i.e., the problem
to find a network topology that may contain false information about connections between faulty processors), and
show that there exists 2 self-stabilizing and fault-tolerant protocol for the topology problem if the neighbors’ IDs are
initially available at each processor. This verifies that the local information about neighbors’ IDs is significant for
designing fault-tolerant and self-stabilizing protocols.

Keywords Distributed Algorithms, Self-stabilization, Fault-tolerance, Topology problem, Asynchrony

1 Introduction

A self-stabilizing protocol is a protocol that achieves its intended behavior regardless of the initial network configu-
ration (i.e., global state). Thus, a self-stabilizing protocol is resilient to any number and any type of transient faults:
after the last fault occurs, the protocol starts to converge to its intended behavior. The transient faults model the
faults such that the memory of processors or the messages in transit are corrupted by the fault, but the programs of
the processors are left unchanged. The concept of self-stabilization was introduced by Dijkstra [11], and has attracted
a great deal of attention in recent years (e.g., (1,2,35679 12, 13, 17, 18, 20]).

A k-fault-tolerant protocol (for a specific fault model) is a protocol that always achieves its intended behavior
regardless of k faulty processors deviating from their protocols, when started from a de_signated initial configuration.
A variety of fault models have been studied: they ranges from relatively benign crash faults to completely afbitrary
faults (cf. [16]).

The two concepts of reliability, self-stabilization and fault-tolerance, have been traditionally investigated sep-
arately. Gopal and Perry [15], however, combine the two concepts for the first time. They consider the general
omission fault (ie., a faulty processor is subject to send and/or receive omission, and/or crashing), and show a
compiler that transforms a fault-tolerant protocol for a synchronous system into a fault-tolerant and self-stabilizing
protocol. They also present a fault-tolerant and self-stabilizing consensus protocol in an asynchronous system using
unreliable failure detectors introduced in [20].

Anagnostou and Hadzilacos [4] consider the crash fault (i.e., a faulty processor stops prematurely and does nothing
from that point on) and show that no 1-fault-tolerant and self-stabilizing protocols exist for a wide range of problems,

including the counting problem (i.e., the problem to determine the size of the distributed system) in ring networks.

tThis work was supported in part by the Scientific Research Grant-in-Aid from Ministry of Education, Science and Culture of Japan,
and the Telecommunications Advancement Foundation’s Research Grant.

They also present randomized 1-fault-tolerant and self-stabilizing protocols for the unique naming problem in ring
networks.

In this paper, we investigate the possibility of protocols that are fault-tolerant (as to the crash faults) and
self-stabilizing under some additional assumption: each processor initially knows the IDs of its neighbors.

We consider the topology problem (i.e., the problem to find the topology of the network). The problem is one
of the fundamental problems in distributed systems, and several algorithms have been designed for the problem (cf.
(8, 14, 19]). But no fault-tolerant and self-stabilizing algorithms have been proposed.

In the context of fault-tolerant and self-stabilizing algorithms, it may be impossible to determine the exact
topology of the network, since it may impossible to determine connections between faulty processors. Thus, we first
define the topology problem in a faulty network as a problem to find a network topology that may contain false
information about connections between faulty processors. The problem is regarded as a generalized problem of the
counting problem, since the solution for the counting problem can be easily obtained from that for the topology
problem.

For the topology problem, we present a fault-tolerant and self-stabilizing protocol that solves the problem in spite
of k faulty processors in (k + 1)-connected networks. This verifies that the local information about neighbors’ IDs
plays an important role in design of fault-tolerant and self-stabilizing protocols.

The protocol in this paper uses both the neighbors’ IDs and the information about connectivity. From this, we
can think of a natural question: Is it possible to design a fault-tolerant and self-stabilizing protocol using only the
neighbors’ IDs or using only the connectivity information?

In this paper, we deny the possibility, that is, we show the information used in the protocol is minimal information
to solve the problem. The result in [:1] implies that there exists no 1-fault-tolerant and self-stabilizing protocol for the
counting problem, if only the connectivity information is available and the neighbors’ IDs are not available. This is
because Anagnostou and Hadzilacos consider only a ring network and can use, in design of protocols, the knowledge
that the network is 2-connected. In this paper, we also prove that the information about the neighbors’ IDs is not
sufficient information for designing a fault-tolerant and self-stabilizing protocol: we prove that any k-fault-tolerant
and self-stabilizing protocol that solves the counting problem in (k+ 1)-connected networks cannot solve the problem
in some k-connected network even if there exists no faulty processor.

The rest of this paper is organized as follows. Section 2 presents the computation model of distributed systems
and several definitions. Section 3 shows a k-fault-tolerant and self-stabilizing topology protocol. The impossibility
result is mentioned in Section 4.

2 Model

2.1 Distributed systems

A distributed system D = (N, A) consists of a processor network (simply called a network) N and a protocol A. The
network IV is represented by an undirected graph N = (P, L) where the vertex set P is the set of the processors and
the edge set L is the set of the bidirectional communication links (simply called links). We consider a network of
arbitrary topology. If (p, g) € L holds for processors P and g, then p and g are called neighbors. The protocol A4 is a
collection of algorithms, one for each processor in the system.

Table 1: Glossary of notations
N=(RIL) the network with processor set P and link set L.

7,q processors.
idp the unique ID of processor p.

NID, the ID set of p’s neighbors.
NE the set of all k-connected networks.

R, q the register used for communication from p to g.

F(E) the set of faulty processors in execution E.

C(E) the set of correct processors in execution E (ie., C(E) = P — F(E))-

I a problem.
Lu(N,F) | the set of legal execution of problem II on N with faulty processors F.

TI, the variable of processor p that stores the topology information.
AP an application protocol. Each processor p has an application process AP,.
TP the topology computation protocol. Each processor p has the topology computation process TP;.
RP the reset protocol. Each processor p has the reset process RPp.

Let N = (P, L) be a network and p and g be processors in P. A p-q pathis a sequence (po(= D) P1,P25- -~ ,pe(=q))
of distinct processors such that (pi,pit1) € L for eachi (0<i<{E- 1). Two p-q paths are internally disjoint, if the
paths share no processor except for p and . Fora positive integer k, a k-connected network is a network where there
exist at least k internally disjoint p-q paths for any distinct processors p and g. The set of all k-connected networks
is denoted by N*.

We adopt the link-register model introduced in [13]. Two neighbors p and ¢ communicate by the use of two shared
commaunication register Rpq and Rgp. The register R, (resp. Rgp) can be written only by p (resp. ¢) and read
only by g (resp. p); we say that p (resp. g) owns Rpq (resp. Ryp)- Every communication register is atomic with
respect to read and write operations: all read and write actions to the same register can be serialized in time. In
this paper, we simply use the term register for the shared communication register.

A processor is a (possibly infinite) state machine. A configuration of a system is a vector of processor states and
register contents. Let S; be the state set of the i*" processor and T; be the set of symbols that can be stored in the
jtP register.! The set C of all possible configurations is

C=(31szx---xSan)legx---xEm)

where n (resp. m) is number of the processors (resp. registers) in the system.

2.2 Protocols and processor faults

Fach processor p has a unique ID (denoted by idp), and executes its program composed of atomic steps. We assume
that processor activity is managed by the read/write demon introduced in [13]: in any configuration, a single processor
is activated to execute a single atomic step. In an atomic step, a processor can change its own state (.., execute

internal computation) and execute either a single read or a single write operation, but not both.

1For convenience, we assume total orders on the processors and on the registers. These orders are used only to describe the configu-

ration, and cannot be used in designing protocols.

An ezecution E of a protocol A is an infinite alternating sequence of configurations and atomic steps £ =
€0,@0,€1,01,... Where ciyy (i > 0) is reachable from c; by a single atomic step a; according to A. Notice that the
protocol A defines a transition function that describes what are the possible legal steps that can be executed from a
configuration. Configuration ¢y is called an initial configuration of E.

A processor is faulty if its behavior deviates from that prescribed by the protocol. We consider only crash faults of
processors: a faulty processor stops prematurely and does nothing from that point on, however, it behaves correctly
before stopping. In the model of the state machine, occurrence of the crash faults is modeled as execution of a special
step called a crash step. The crash step changes the processor state into a special state, crash state, and has no effect
on registers. In the crash state, no further step can be executed. The crash step can be executed at any state except
for the crash state.

Given an execution E of a protocol 4, it is possible to identify the set F(F) of faulty processors (i.e. those in the
crash state after some point) and the set C(E)(= P — F(E)) of correct processors. If every processor in C(E) makes
infinitely many steps in E, then E is called a fair ezecution of A. We consider only fair executions in this paper, and
simply use the term an ezecution for a fair execution.

We assume a model of an asynchronous system: there is no assumption on the number of steps each processor
executes in any prefix of an execution. Note that processor faults cannot be detected in such an asynchronous system
because it is impossible to determine whether a processor has actually crashed or is only “very slow”. This makes it
difficult (sometimes impossible) to design fault-tolerant protocols in asynchronous systems.

Following [4], we introduce a round of an execution to measure the efficiency of protocols. For convenience, we
assume that computation of each processor p proceeds in cycles as follows. In each cycle, p takes the following steps
in a specified order: it reads its nexghbors registers, updates its state, and writes into the registers it owns. Such a
cycle could be interrupted at any point by a crash step.

Let E = ¢q,a0,¢1,a1,... be an execution of a protocol. We define the first round of E to be a minimal prefix
of E such that each processor that is not in the crash state at co has completed at least one cycle or executes the
crash step in the prefix. Letting ¢f(1) be the last configuration of the first round, the second round of E is defined
to be a minimal subsequence C£(1)r @£(1)> Cf(1)+11 f(1)+1> - - - C5(2) Such that each processor that is not in the crash
state at cf(;) has completed at least one cycle or executes the crash step in the subsequence. The following rounds
are defined in the similar way.

2.3 Fault-tolerance and self-stabilization

A problem specifies the required behavior of processors. Formally we define a problem to be a set of legal ezecutions
(i.e. those satisfying the problem requirement). For a network N and a set F of faulty processors, a problem II on
N with faulty processors F' is defined by specifying a set of legal executions of II on N with faulty processors F.
The set of legal executions is denoted by Lp(N, F). Letting N be a network set and k be a non-negative integer, a
problem II is called to be defined for A up to & faults, if Ly (N, F') is defined for every network N in A and every
processor set F' satisfying |F| < k.

In what follows, we say that a configuration is a designated initial configuration, if each processor is in a prescribed
initial state and each register contains a prescribed symbol as its initial value.

Definition 1 (k-fault-tolerant protocol) Let A be a network set, k be a non-negative integer, and I be a problem
defined for A up to k faults. A protocol A is a k-fault-tolerant (k-ft) protocol of I in N, if the following holds:

for any execution E of A starting from the designated initial configuration in any network N(€ N), if it satisfies
|Z(E)| < k, then E is an execution in Ln(N,F(E)). u

Definition 2 (k-fﬁult-tolera.nt and self-stabilizing protocol) Let N be a network set, k be a non-negative
integer, and II be a problem defined for N up to k faults. A protocol A is a k-fault-tolerant and self-stabilizing
(k-ftss) protocol of I in N , if the following holds:

for any execution E of A starting from any configuration in any network N (€ N), if it satisfies |F(E)| £ k, then
there exists a suffiz E' of E such that E' is also a suffiz of an execution in Lu(N,F (E)). |

A 0-ftss protocol is simply called a self-stabilizing (ss) protocol.

2.4 Counting and topology problems

Anagnostou and Hadzilacos ([4]) show that there exists no 1-ftss protocol for solving the counting problem in ring

networks. The counting problem is defined as follows.

Definition 3 (counting problem) The solution of the counting problem II° in a network N = (P,L) is |P| (the
number of processors of N). An execution E = cg,a0,C1,81,--- is legal if and only if there exists a non-negative

integer i such that every correct processor in C(E) knows the solution in every configuration c;j (7 = 1) |

The impossibility result for the counting problem in [4] is strong: it holds even if a protocol is randomized, the
ring is oriented, processors have unique IDs, or a distinguished processor exists.

In this paper, we consider a more generalized problem, the topology problem (i.e., a problem to determine the
network topology), and show that, for every non-negative integer k, there exists a k-ftss protocol for the problem in
N¥+1 (ie., for the set of (k+ 1)-connected networks) if every processor initially knows the IDs of its neighbors as
well as its own ID. We assume that its own ID and the neighbors’ IDs cannot be corrupted by transient errors: at
any configuration, every processor correctly knows the neighbors’ IDs as well as its own ID.

Note that for any pair of faulty processors it may be impossible to determine whether there is a link connecting
them (the processors may crash before reporting what their links are). In other words, we can only determine the
topology of the subnetwork that consists of links connecting to correct processors. Thus, the topology problem in a
faulty network is defined as follows. y

Definition 4 (topology problem) Let N = (P, L) be a network of a system and F be a subset of its processors.
A network N’ = (P', L) is a solution of the topology problem II* on N with faulty processors F, if and only if

(PP =P)\(L—{elee FxF}) < I' C (LU{ele € F x F}))

holds. An execution E = ¢p,@0,€1,a1,:-- is legal, if and only if there exists a non-negative integer ¢ such that all
correct processors in C(E) know N’ in every configuration ¢; (j = i) where N' is a solution of II* on N with faulty
processors F(E). The configurations c; (j > i) are called final legal configurations. |

From the solution of the topology problem, we can obtain the solution of the counting problem. Thus, we can
regard the topology problem as a generalized problem of the counting problem.
Even if we solve the topology problem, we cannot obtain the exact topology, that is, the solution may contain false

information about connections between faulty processors.”? However, its information concerning the links incident to

275 this sense, the topology approzimation problem is a better name for the problem.

correct processors contains no false connections, and it is highly expected that the solution of the topology problem is
useful in many situations. For example, consider a routing problem for transferring a message from a processor, say
P, to a processor, say ¢. In the situation where there may exist & undetectable faulty processors, one of its solutions
is to send k + 1 copies of the message along k + 1 internally-disjoint p-g paths. We can determine the paths from
the solution of the topology problem. These determined paths may contain some non-existent paths because the
solution of the topology problem may not be an exact topology. N evertheless, we can transfer a message from p to
¢ (if both p and g are non-faulty), since the paths include at least a path that consists of only non-faulty processors
and actually existing links. Moreover, since all processors obtain the same topology information (as the solution
of the topology problem), all non-faulty processors can determine the same k + 1 P-q paths by executing the same
sequential algorithm on the topology information. Thus, the internal processors on these paths can determine (from
the source p and the destination ¢) which neighbor it should relay the message to, even if the message does not
contain the information about the whole path.

3 Fault-tolerant and self-stabilizing topology protocol

3.1 Overview of the k-ftss topology protocol

In the k-ftss topology protocol, each processor p maintains a local variable, T'I,, to store fopology information it
knows (Fig. 2). Topology information is a set of local connections and the local connection is a set of links incident
to a single processor. In the protocol, the local connection is represented by a pair of a processor ID and the set of
IDs of its neighbors. i

The k-ftss topology protocol proposed in this paper is based on the following sunple (non-stabilizing) k-ft topology
protocol in N**1. At the designated initial configuration, TI, = {(idp, NID,)} holds at each processor p, where
NID, stands for the ID set of p’s neighbors, and every register is empty. Every processor p repeatedly exchanges its
topology information with all neighbors, and updates T, by augmenting it with the newly obtained local connections.
Since we consider only the crash faults, there is a some point after which the topology information does not change.
The final topology information is same at all correct processors, since there exists a non-faulty path between any
pair of correct processors. Moreover, the final topology information is a solution of the topology problem, since it
contains the local connections of all correct processors.

In a k-ftss topology protocol, however, we can make no assumption on the initial value of T'I,: the initial tbpology
information may contain false local connections, that is, it may contain non-existent processors and/or links. Thus,
the protocol described above is not a self-stabilizing one. The idea for making the protocol self-stabilizing is to ensure
that if the topology information contains a false local connection then some correct processor “eventually” detects
the inconsistency. In the k-ftss topology protocol in this paper, therefore, when the topology information is updated,
its consistency is checked. Whenever some processor detects inconsistency on its topology information, it issues a
reset request to clear false topology information from the whole network.

We give a framework for designing a k-ftss protocol. In the framework, we consider a general problem apart from
the topology problem, and, hence, we consider an application protocol instead of a topology protocol. The k-ftss

protocol is designed in a layered manner, and consists of the following two protocols.

(A) k-ftss reset protocol: It provides reset facility and reliable communication between neighbors. Each processor
p has a reset process RP, to execute the reset protocol.

(B) k-ft application protocol with inconsistency detector: It is a k-ft protocol for a problem, say IL. Each processor
p has an application process AP,. Tt exchanges information with other application processes on its neighbors
(using reliable communication the reset protocol provides) and solves II. Tt also checks consistency of the

information, and issues a reset request whenever it detects inconsistency.

These protocols communicate with each other by the following events: each protocol executes outpui events that

are treated as input events by the other protocol.
Definition 5 (interface between AP, and RP,) The following events are executed at each processor p.

1. AP, — RPp: The following events are generated by an application process AP, and are treated as input events
by a reset process RFPp.

e Sendpq(m) (for every neighbor g of p): AP, sends a message m to AP,.

o Request,: AP, issuesa reset request to reset the system configuration.
2. RP, — APp: The following events are generated by RFPp and are treated as input events by APp.

o Freepq (for every neighbor g of p): RPp is ready to accept another message sent from AP, to AP,.
o Receivegp(m) (for every neighbor g of p): RFp delivers AP, a message ™ that RP, receives from g.

o Signal,: AP should be initialized (i.e. APp should restart the application process from the initial state
that the protocol prescribes). , |

Using the events described above, an application process AP, sends a message m to a neighboring application
process AP, as follows. First, AP, executes Sendy g(m). The event is also an input event of a reset process RPp,
and make RP, write the message ™ (with additional information for the reset protocol) into register Rp,g. When
RP, reads m from Rp,g, it executes Receivep q(m) to deliver m to AP,, and sends acknowledgment to RP, through
a register Rqp. On reading the acknowledgment from Rgp, RPp executes Freey,q to inform AP, that RP, is ready
to accept another message to AP,.

For simplicity, we make the following assumptions without loss of generality.

A1) After AP, executes Sendp (™ for some message m, it does not execute Sen m') for another message m'
P 9 v

until Freep q OCCUTS.

A2) After Free, , occurs, AP, eventually executes Sen m) for some message m, Or P crashes.
€p.q P ¥ ,

Assumption (Al) may cause an “internal” deadlock within a processor p such that AP, is waiting for Freep, q
while RP, is waiting for Sendp . In what follows, however, we assume that such an “internal” deadlock cannot
occur, that is, every processor is “internally” consistent. This assumption is made only for simplicity, because it is

easy to avoid such an “internally” inconsistent state.

3.2 k-ft topology protocol with inconsistency detector

This subsection shows the k-ft topology protocol with inconsistency detector TP, that is, an application protocol for
the topology problem.

The protocol is based on the k-ft topology protocol described in the previous subsection. In the k-ftss topology
protocol, however; we can make no assumption on the initial topology information each processor p stores in variable
TI,. Therefore, each topology computation process TP, includes a process called a inconsistency detector to detect
inconsistency on TI,. When TI, is updated, the inconsistency detector checks the new value of TI,. If it detects
inconsistency on T'I,, TP, executes Reguest, to reset the configuration.

Now we only describe the way to detect inconsistency on the topology information. The topology information
T, is clearly inconsistent, if at least one of the following holds. (In the sequel, NID, stands for the ID set of p’s real
neighbors.)

(I1) T1I, does not contain (idp, NID,).
(I2) TI, contains (id, NID) and (id', NID') such that id = id’ and NID # NID'.
(I8) TI, contains (id, NID) and (id", NID') such that id’ € NID and id ¢ NID'.

If topology information satisfies at least one of the above conditions, it is called locally inconsistent; otherwise, it
is called locally consistent.

Some inconsistency on the topology information, however, cannot be detected only by the above conditions.
Consider the following configuration of a network N = (P,L). Let p be a processor in P and id’ be a non-existent
processor ID (i.e., P contains no processor whose ID is id’). Assume that the topology information TI, of every

processor g except for p satisfies

Tho= |J ({(id.,NID.)} u{(idy, NID,U {id' 1},
reP—{p}
and p is in the crash state. In the configuration, the topology information of every correct processor is locally
consistent. But it is not a solution of the topology problem, since it includes the non-existent ID id’. To avoid such
a situation, we use information about the connectivity of the network.

We introduce an extended network of the topology information. Consider locally consistent topology information
TI = {(id;, NID)|1 <5 < n'}3. If a processor ID id appears in some NID? (1 < j < n') but there is no
h (1. < kh £ ') such that idj, = id, then we say that id is a pending ID of TI, and the set of the pending ID of T'T
is denoted by pen(TI). We can induce a network from the topology information T'T » by considering the topology
information as a set of links. An extended network is defined to be a network obtained by augmenting the induced
network with the links between all pairs of the pending IDs. Formally, the extended network ez N (TI) of TT is a
network ezN(T1) = (ezP(TI),ezL(TI)) where '

® ezP(TI) = U,¢;c,, ({idi} U NID?), and
° ezL(TI) = U, ¢;c,{(idi,v) |v € NID'} U {(v;w)|v,w € pen(TI)}.
Example 1 Let TT be locally consistent topology information such that
TT=1{(1,{2,4,8,9}),(4,{1,3, 5}),(5,{4,8,9}), (8,{1,5,86, 91, (9,{1,5,6,8})}.

Then, pen(TI) = {2,3,6}, and the extended network of T is shown in Fig. 1. In the figure, white circles denote
the pending IDs of T'I. m

Figure 1: An extended network

Concerning the extended network, the following lemma can be proved.

Lemma 1 Let k be any non-negative integer, and N = (P, L) be any (k+ 1)-connected network. For any nonempty
P'(C P), the extended network exN(TIF') is (k + 1)-connected, where TIP' = {(idp, NID,)|p € P'}.]

From the lemma, we can think of the following inconsistency condition on TI,.

(14) The extended network ez N(TI,) is not (k + 1)-connected.

with the inconsistency detector. The function

ocess TPy
, (12), (I3), and (14) holds.

Figure 2 shows the fault-tolerant topology computation pr

inconsistent(TI,) becomes true, if and only if at least one of the conditions of (I1)

Lemma 2 The topology computation protocol TP has the following properties, when it is executed on any (k+1)-

connected network with at most k faulty processors.

ated initial configuration, no processor-p executes Request, (i.e., at

(T1) In any execution starting from the design
function inconsistent(TI,) never becomes

any configuration reachable from the designated initial configuration,

{rue at any Processor p).

(T2) When started from any configuration,

(a) acorrect processor p executes Reguest, in O(n) rounds (n denotes the number of processors in the network),

(b) at a correct processor p, Signal, occurs in O(n) rounds, or

(c) it reaches a final legal configuration in O(n) rounds.
]

we use notation NID* to distinguish it from

3Since it is possible that NI D¢ is different from the ID set of the real neighbors of id;,

NID;.

.(a) Variable T1,
typelocal_connection = record
id : processorID;
NID : set of processor_ID;
end;
topology.information = set of local_connection;
var T1I, : topology_information;
(b) On input event Free, ,
output Send, o(TI,);
(c) On input event Receive, ,(m)
TI, :=TI,Um;
if inconsistent(TI,) then output Reguesty;
(d) On input event Signal,
TI, := {(idy,, NID,)};

Figure 2: Topology computation protocol T'P: processor p

3.3 k-ftss reset protocol

Several papers [5, 6, 9, 18] present ss reset protocols that resume execution of an applica.tion protocol AP from a
configuration that is reachable from the designated initial configuration. A k-fiss reset protocol RP satisfies the
following requirements.

(R1) When started from any configuration, a k-ftss reset protocol RP eventually resets an application protocol
AP, in spite of at most k faulty processors, to a configuration that is reachable from its designated initial
configuration, if sufficiently many Requests occur.

Awerbuch et al. [9] give a formal specification of an ss reset protocol. It speciﬁe:s the requirements of a reset
protocol using properties called timeliness, causality, and consistency. We can naturally extend the speciﬁca-mtion to
that for a k-fiss reset protocol. However, we omit the extended specification in this paper, since the extension is
straightforward.

While several ss reset protocols are proposed, there exists no fault-tolerant and self-stabilizing reset protocol.
Now, we show the idea of the k-ftss reset protocol proposed in this paper.

We realize the k-ftss reset protocol using ss link protocols and version numbers, which are common technique.
The details of the k-fiss reset protocol is shown in Fig. 3.

The link protocol is a protocol to provide reliable communication between neighbors. A processor p sends
information to a neighbor g by writing some message into register R, ,. Because of asynchrony, it is possible that
g reads R, many times before p writes some new message (i.e., message duplicate), or that p writes some new
message into Ry o before ¢ reads the previous message (i.e., message loss). To avoid such message duplicate and loss,
many ss protocols use ss link protocols as communication primitives (2, 3, 4, 17]. The link protocol has the‘following

property:

10

(a) On input event Send,, q(m)
s-msgplq] :=m; s.unplg] := vnp;
repeat
with R, , do msg := s_mesplq);vn = sumplgl; sf :=="87;
until Rgp.mf ="R”;
repeat
Rpg.sf =T"
until By p.rf =“W?;
output Freepq;

(b) On input event Request
UNp = VNp t+ 1;
output Signaly;

(c) To receive messages from ¢

repeat forever

repeat

Rpq.rf :=“W7;

with R, , do r_msgplq] := msg;T-onylg) :=vn; Z = sf;
until Z =“5”;

if r_vnplg] = vnp then

output Receiveg,p(T-msgplq])
else if r.vny[g] > vnp then

vy 1= T UMpg];

output Signaly;

output Receivegp(r-msgpla]);
repeat

Ry qrf :=“R7;
until Ry p.sf =“T";

Figure 3: k-ftss reset protocol RP: processor p

11

e if both p and g are correct, then the sequence of messages received by Receive, o is equal to the sequence of

messages sent by Send, 4, and

e otherwise, the sequence of messages received by Receivey, 4 is equal to a prefix of the sequence of messages sent
by Send, ,.

In the k-ftss reset protocol, we use the ss link protocol presented in [2]. For every pair (p,q) € L, we use the
link protocols LP(p,q) and LP(g,p). The link protocol LP(p,q) (resp. LP(q,p)) is used to transfer messages from
processor p (resp. g) to its neighbor g (resp. p). '

The protocol LP(p,q) is a simple 4-state protocol. In Fig. 3, the link register Ry, (resp. Ry) contains a flag sf
for the sender p (resp. a flag 7f for the receiver g). The flag sfis either I (“Idle”) or S (“Sending”), and the flag rf
is either W (“Waiting”) or R (“Receiving”).

Whenever an application process AP, detects inconsistency on the information it has, it executes Request,, and
initializes its state on receipt of Signal,®. We can consider that AP, initiates a new version of the application process.
To distinguish messages between old and new versions, a version number is used in RP. Each reset process RP, has
a local counter vn, to store the current version number, and attaches the version number to messages it sends. The
similar idea is used in many protocols (e.g., [5, 14, 20]). When RP, receives a message (m,vn') from a neighboring
reset process RF,, it compares the attached version number vn' with its current version number vnp. If vn' = vn,,
then RP, executes Receive, ,(m) to deliver the message m to AP,. If vn' > vn,, then RP, sets vn, to vn/, executes
Signal, to initialize AP,, and executes Receive, ,(m). If vn’ < vnp, RP, simply ignores the message m.

When AP, detects inconsistencyl on its information, it executes Request, in order to reset the system using the
reset protocol. Then, RP, increments vn, by one and executes Signal, in order to initialize AP,. In the protocol,
no special message is used to broadcast the reset request: since the application process repeatedly sends messages
to its neighbors (assumption (A2)), the reset request is broadcast over the whole network by messages with the new
version number. -

In Fig. 3, each register R, ¢ has a field vn to store a version number. Each processor p has variables s_msg,[q] and
s-unp[q] for each neighbor g to store the message and the version number that p is sending. The variables r_msg,|q]

and 7_vn,[q] is similarly used to store the received message and version number.

3.4 k-fiss topology protocol

Theorem 1 Let TP be the topology computation protocol shown in Fig. 2, and RP be the reset protocol shown
in Fig. 3. Consider the protocol TP such that TP and RP run concurrently in TP*. The protocol T'P* is a k-ftss
protocol for the topology problem in N'*+1, and it reaches a final legal configuration in O(n) rounds where 7 is the
number of processors in the network.
(Outline of proof) Consider an arbitrary execution of TP~. Let VN be a set of version numbers that are stored
(at processors or link registers) at the initial configuration and are received by some correct processors in the
execution, and let v~ be the maximum value of VN. (Notice that there may exist some version number at the
initial configuration that is not received by any correct processor because of crash faults.)

When a processor p increments its version number, it sets correctly its local connections to T, (i.e., it executes

TIp := {(idp, NIDy)}). Thus, the topology information with version number vn™ + 1 contains no false connections

*For simplicity of the protocol description, even in the case that AP, executes Requesty, AP, initializes its state on receipt of Signal,
from reset process RP;.

12

at any configuration. Therefore, once a correct processor increments its version number to vn” + 1, it is clear from
Lemma 2 that TP~ reaches a final legal configuration in O(n) rounds.
On the other hand, from the property of the reset protocol RP, TP~ reaches a configuration, say ¢”, in O(n)
rounds where every correct processor has a version number vn” or larger. :
Consider the execution after the configuration ¢”. If some correct processor p executes Regquest, or Signal, in
O(n) rounds, then its version number becomes vn* + 1 and TP~ reaches a final legal configuration in O(n) rounds.
If there is no correct processor that executes Regquest, or Signal, in O(n) rounds, it follows from Lemma 2 that TP~

reaches a final legal configuration in O(n) rounds. |

4 TImpossibility result

The previous section shows a k-ftss protocol for the topology problem in N¥+1. In the protocol, every processor
uses additional information as to the neighbors’ IDs and the connectivity. In this section, we consider the following
question: Is it possible to design a k-ftss topology protocol using only the neighbors’ IDs or using only the connectivity
information? In what follows, we deny the possibility even for the counting problem. Notice that the topology problem
is at least as hard as the counting problem.

We consider the case that only connectivity information is available at each processor, first. Anagnostou and
Hadzilacos [4] show that no 1-ftss protocol exists for the counting problem even in ring networks. Since a ring network
is 2-connected, their result implies that no 1-ftss protocol exists for the counting problem, even if each processor
knows that the network is 2-connected (and each processor does not know its neighbors’ IDs). Thus, it is impossible
to design a k-ftss counting protocol—using only the connectivity information. :

Second, we consider the case that only the neighbors’ IDs are available at each processor. If network partition
occurs because of processor faults, then the counting problem clearly becomes unsolvable. Thus, there exists no k-ftss
counting protocol in a k-connected network, even if the neighbors’ IDs are available at every processor. However, it
may be possible to design an ss counting protocol that tolerates up to k faulty processors if these k faults does not

cause network partition (i.e. if the surviving network is connected). The following theorem denies the possibility.

Theorem 2 Let CP be any k-fiss protocol that solves the counting problem in N¥+1 The protocol CP is not an
ss protocol in Nk: there is some k-connected network such that CP cannot solve the -problem in the network even
if no faulty processor exists. :
(Outline of proof) To prove the theorem by contradiction, we assume that CP can solve the counting problem in
any k-connected network with no faulty processor (when started from any configuration).

We show the contradiction using the fact that a faulty processor cannot be distinguished from a “very slow”
processor. Thus, if some “yery slow” processors execute no steps during a sufficiently long period, the protocol runs
as if the processors were faulty.

In what follows, we show the scenario: if k processors are slowed down for a sufficiently long period in some
k-connected network Nz, the protocol CP runs as if the k processors were faulty in some other (k + 1)-connected
network N;. We construct Ny and N, so that they are different in size.

Let Ny = (P1,L1) be a (k+ 1)-connected network and let n. = |Py|. Letting p be a processor such that p € P,
we define a network Nz = (P;, L2) as follows:

° P2=P1U{p}.

13

® Ly =L, U{(p,p') |2’ € P'}, where P’ is a subset of P, such that [P = k.

Notice that |[P;] = n + 1 holds. It can be also proved that the network N, is k-connected.

Since CP is a k-ftss counting protocol in N**1, CP solves the problem in NV, even if all processors in P’ are
faulty, that is, it eventually reaches a configuration where every correct processor in P; — P’ considers n as the
solution of the counting problem in Nj.

Now consider the execution of CP on N,. Let C, be a set of configurations of N, where every processor in P,
considers 7 + 1 as the solution of the counting problem, and let C; be a set of configurations of N, where every
processor in P} — P'(= P; — (P'U{p})) considers n as the solution of the counting problem. We call a configuration
in Cq (resp. in C3) a legal configuration (resp. an illegal configuration).

We consider the following strategy followed by the adversary for scheduling steps of processors in N, with no
faulty processors. The adversary runs CP until it reaches a legal configuration. Since CP is an ss protocol in N,
with no faulty processors, it eventually reaches a legal configuration. Once such a configuration is reached, the
adversary slows down the processors in P’. Let E be execution of CP during the processors in P’ make no step. Let
E' be a projection of E to P, that is, E' is obtained from E by removing the states and atomic steps of p and the
registers incident to p. We can prove that E’ is also an execution of CP in N, where all of the processors in P’ are
faulty. Thus, if E' is sufficiently long, it contains a configuration where every processor in P; — P’ considers n as
the solution. From this, if the adversary slows down the processors in P’ for sufficiently long in N,, CP reaches an
illegal configuration. After C'P reaches the illegal configuration, the adversary activates the processors in P’. Then,
CP eventually reaches a legal configuration, since it is an ss counting protocol in N, with no fault.

By following this strategy repeatedly, the adversary can schedule processor steps so that illegal configurations
appear infinitely often. This contradicts the assumption that CP is an ss counting protocol in N, with no faulty

processor. m

5 Conclusions

We proposed a k-fault-tolerant and self-stabilizing protocol for the topology problem in asynchronous model of
distributed systems. In the protocol, every processor uses accurate information about the neighbors’ IDs and the
network connectivity. We also showed that the information is minimal information to solve the problem, that is, the
problem is unsolvable if processors cannot use both the neighbors’ IDs and the connectivity information.

We designed the protocol in a layered manner, and proposed a k-fault-tolerant and self-stabilizing reset protocol
as an underlying protocol. In the reset protocol, we use a version number. During execution of the reset protocol,
the version number becomes at most one greater than the maximum value stored (at processors or link registers)
in its initial configuration. Since we can make no assumption on the initial value, however, the version number is
unbounded. It is one of our future works to investigate the possibility of a k-fault-tolerant and self-stabilizing reset
protocol with bounded space.

Acknowledgments: The main part of this work was done during my stay at Computer Science Department,
Cornell University as a visiting researcher. I am most grateful to Prof. Sam Toueg for his helpful discussions and
many important comments that improved this work very much. I also thank Prof. Nobuki Tokura (Osaka University)
and Prof. Hideo Fujiwara (NAIST) for their suggestions to my research, and thank anonymous reviewers for their
helpful comments.

14

References
[1] Y. Afek, S. Kutten, and M. Yung. Memory-efficient self stabilizing protocols for general netoworks. In Proc. 4th WDAG
(LNCS 486), pages 15-28, 1990.

[2] E. Anagnostou and R. El-Yaniv. More on the power of random walk: uniform, bounded self-stabilizing protocols. In
Proc. 5th WDAG (LNCS 579), pages 31-51, 1991.

[3] E. Anagnostou, R. El-Yaniv, and V. Hadzilacos. Memory adaptive self-stabilizing protocols. In Proc. 6th WDAG (LNCS
647), pages 203-220, 1992.

[4] E. Anagnostou and V. Hadzilacos. Tolerating transient and permanent failures. In Proc. 7th WDAG (LNCS 725), pages
175-188, 1993.

[5] A. Arora and M. Gouda. Distributed reset. In Proc. 10th Conference on Foundations of Software Technology and
Theoretical Computer Science (LNCS 472), pages 316-331, 1990.

[6] B. Awerbuch and R. Ostrovsky. Memory-efficient self-stabilizing network RESET. In Proc. 18th ACM PODC, pages
254-263, 1994.

[7] B. Awerbuch, B. Patt-Shamir, and G. Varghese. Self-stabilization by local checking and correction. In Proc. IEEE 32nd
FOCS, pages 268277, 1991.

[8] B. Awerbuch, B. Patt-Shamir, and G. Varghese. Bounding the unbounded. In Proc. 13th IEEE INFOCOM, pages
776-783, 1994.

[9] B. Awerbuch, B. Patt-Shamir, G. Varghese, and S. Dolev. Self-stabilization by local checking and global reset. In Proc.
sth WDAG (LNCS 852), pages 326-339, 1994.

[10] T. Chandra and S. Toueg. Unreliable failure detectors for asynchronous systems. In Proc. 10th ACM PODC, pages
325-340, 1990.

[11] E. W. Dijkstra. Self-stabilizing systems in spite of distributed control. CACM, 17(11):643-644, 1974.
[12] S. Dolev. Optimal time self stabilization in dynamic systems. In Proc. 7th WDAG (LNCS 725), pages 160-173, 1993.

[13] S. Dolev, A. Israeli, and S. Moran. Self stabilization of dynamic systems assuming only read/write atomicity. In Proc.
9th ACM PODC, pages 103-117, 1990.

[14] S. G. Finn. Resynch procedures and a fail-safe network protocol. JEEE Trans.Comm., QOM-27(6):840—845, June 1979.

[15] A. Gopal and K. J. Perry. Unifying self-stabilization and fault-tolerance. In Proc. 12th ACM PODC, pages 195-206,
1993.

[16] V. Hadzilacos and S. Toueg. Fault-tolerant broadcasts and related problems. In S. Mullender, editor, Distributed Systems
(2nd edition), chapter 5, pages 97-145. Addison-Wesley, 1993.

[17] A.Israeli and M. Jalfon. Token management schemes and random walks yields self stabilizing mutual exclusion. In Proc.
9th ACM PODC, pages 119-131, 1990.

[18] S.Katz and K. J. Perry. Self-stabilizing extensions for message-passing systems. In Proc. 9th ACM PODC, pages 91-101,
1990.

[19] J. M. Spinelli and R. G. Gallager. Event driven topology broadcast without sequence numbers. IEEE Trans. Comm.,
37(5):468—474, May 1989.

[20] G. Varghese. Self-stabilization by counter flushing. In Proc. 13th ACM PODC, pages 244-253, 1994.

15

2 = ‘ ' :;;-.q&-a. '.:.:nr"ﬁ'\'i s ff

-~

A = oy - N . ’ » - S -

DAUN 0% 2o ol dreworia larsnyy 0t s!‘.?:‘:si:w.q g:u..dijau sysu's}*ufm.ib.f gty M.bmr uahufi 2 glets ¥ [
' - BRdf A§-Ti- O SR TAN

ad Ll ey ;rn.m}ww:: o f-_é..u‘id drwlien dlav mobast Yo wion s go s1oM gl IR H bus wososnsar B (]
%

J00F (F3-18 abmag ‘W'\‘o '.'.-}\ﬁﬂ.) DRAE Dot

FAARY BEIE 415 e ol slowossre paisilidies Ve wridrgehes viousld sonilisbad LV bite. criup¥ A0 - vonergsol 8 i)
SHBL (DE0-80S argid 7S

af,-gltci 280 2OWAY DAY AT Ao ol erndis) fuspoarmon hus soskasyz giisssdol -oosbisbaH 'V be wotpcngacd. H {4
SRBL AT

bas gpelondofT Yol Yo wnoililedud ma samvvitas™ AfL A i dspes Betudtiy i shist) A bos swezh A T3
et JEL-TEE wsgeq 2L ‘?.T)‘!‘.l*. B3I Aane T lesasasdT

=gsq DO WOk AT sell gl T daowias gaisiida s mm:rﬁs-{'mm:-!ﬁ laworeal} Of bis doitchimet. T bt
BB R

bl THEL ee® al coblosrios has bnslvdo fevel v cobenilidiading aenlsraV O b msdp T8 8 gisadasy 4 8 (1
69T RVR-R0E winig FS0OR
wogey MOVORVY TR At 5% o bebharoday i suibguol seodgeaV (O baw fead2-#aT (8 depdeend A {8l

‘ SEHED EAT-ETY
sovdal. sssen leduly bas guisdiedd lavel d pogtisllidaia g sl .2 Bue pandyteV O lmad-aT 8 damfwiwd 5 i
. S86} GRE-0NG avyig ABE EONE) DAGW A8

asgeq OUOSL MDA 91 oot wl eimvizys svons uba{d.ﬁ- 1ok 3sdoarel arilint Sidailnsl geadT 2 fus: s..bnsﬂ' a0 e

L GR-ves
A00E pRAEMDEIIITE MWD ED Lloaimss batidrtoibh T --.ﬁq:e chamsiang puinilidein-lsl el AN [Tk
LB EVL-05] wnpsy S3AT SOUL) DAOW &Y 3o ol imbern ohmsreh ol sobseilidets T st laoiiq® euled 2 51 1

W .2 boadloszal A vt 2 [E1]
ARHD VL2601 dedsq ,-'..ﬂ{-)‘:n D, A

2ot ad gaislerotis stive\baoy viue sisees astrave plossreh o soitasifdo M2 Bus

A0 S0l BEB-URIRTSIIGD sreet amir T FEEL dusude ayg dvawisy o hﬂ £ bres evurbeiorg donyeel . T8k e
GUE-300 ‘eagng DAON MOK MRE 200 6 saiansler il bas fol fesilidogs Has amtgind e L JF Soelaged o4 fag]
§ LT
vinedegs bedwdiokestl sugiba sebacslldd 7 al seuigore batalsr hosalzeo el fuurslos - diiet il & e swalinbsil VL
apalesF cnosthivl SEORE sy, & i igasdln Lnokiiy bat),

vl ol gt leu oy Sitiilideds Max chloiy cdigwr wb s doe svasile2 fianms gngunim icsgod sl B i el L&

ERTE ORI dngea DEDS WA AR

ey

RILEE S CLEE

PA AN et el soreiove PEGERG- Sn. 59 2naiiirs poisiidy s 1A bes aelE R [81]

EIELE SV RS Ik SR PaaSipy et ashand pploted apvib Juse® sy (o

SORT TFELR songn QT WD day - ol gehind wiaees (d atiaabkdeh Ml sideasT D iy

m—
1

E -_4 . =

Paper Number 2

Maximum Flow Routing

Mohamed G. Gouda and Marco Schneider

MAXIMUM FLOW ROUTING
Mohamed G. Gouda and Marco Schneider

Department of Computer Sciences
The University of Texas at Austin
Austin, Texas 78712-1188

Abstract

We describe a protocol for routing and allocating virtual circuits from any vertex to a designated
destination in a computer network. In this algorithm, the network vertices maintain a maximum flow
spanning tree whose root is the designated destination. Every requested virtual circuit is allocated along
the maintained tree. However, as virtual circuits are allocated along the tree, the tree may lose its
property of being a maximum flow tree, and so need to be updated. We describe a novel protocol for the
network vertices to periodically update the maintained tree to keep it a maximum flow tree. This
protocol is stabilizing, and has the nice property that while the tree is being updated, it always remains a
tree whose root is the designated destination.

1. Introduction |

Computer networks can be represented as connected, undirected grap;hs, where vertices represent
computers and edges with positive capacities represent channels between computers. The flow of a path
in such a network is the minimum capacity for an edge in that path.

Identifying maximum flow paths in networks is useful for establishing and maintaining virtual
circuits in computer networks. To establish a virtual circuit with some required capacity between two
vertices in a network, a maximum flow path between the two vertices is first identified in the network. If
the flow of the identified path is greater than or equal the required capacity of the circuit, then the circuit
is established along the identified path. Otherwise, the circuit is rejected. |

Also, if an edge in an established circuit happens to fail, a maximum flow path between the two
ends of the failed edge is identified. Then the two disjointed parts of the circuit are re-connected by a
connection along the identified path [4].

In this paper, we describe a protocol for allocating virtual circuits from any vertex to a
designated destination in a computer network. In our protocol, the network vertices maintain a maximum
flow spanning tree whose root is the designated destination. Every requested virtual circuit is allocated

along the maintained tree. However, as virtual circuits are allocated along the tree, the tree may lose its
property of being a maximum flow tree, and need to be updated. We describe a protocol for periodically
updating the maintained tree to keep it a maximum flow tree. This protocol is stabilizing [8], and has the
nice property that while the tree is being updated, it always remains a tree.

2. Maximum Flow Trees

A network N is a connected and undirected graph whose set of vertices is V and whose set of
edges is E. One vertex r in V is called the root of N. Associated with each edge {v, w}in E is a non-
negative integer c.{v, w}, called the capacity of edge {v, w}.

A path in N is a non-empty sequence of distinct vertices in V such that each pair of consecutive
vertices in the sequence is an edge in E. A path is called rooted iff its last vertex is the root r of N. For
example, the path that consists of the single vertex r is rooted.

The flow of a rooted path in N is the minimum capacity of an edge in the path. Thus, if a rooted
pathpin Nis<vQ; ... ; vk>, then
the flow of p =
min {c.{vi, vi+1}10<i<k }

A rooted path p in N is called a maximum flow path iff for every rooted path q that has the same
first vertex as p in N,

the flow of p > the flow of q

The flow of a vertex v, other than the root r, in N is the flow of a maxunum flow path, whose
initial vertex is v, in N. The flow of r is the maximum edge capacity in N.

A spanning tree T of N is called a maximum flow tree iff every rooted path in T is a maximum
flow pathin N.

The following theorem, taken from [7], establishes the relation between the maximum weight
spanning trees of a network [5] and the maximum flow trees of the same network.

Theorem 1: Each maximum weight spanning tree of a network N is a2 maximum flow tree of N. The
converse is not necessarily true.

A corollary of this theorem is that each network has a maximum flow tree.

3. Maximum Flow Tree Protocol

In this section, we present a distributed protocol, taken from [7], for maintaining a maximum
flow tree T in an arbitrary network N = (V, E). The protocol is distributed because it consists of several
programs, one for each vertex in V, and the program of each vertex v has few constants that relate to
vertex v only. In partiéular, the program of a vertex v has the following four constants:

i. D is an upper bound on the number of vertices in the longest path in N.
ii. F is the maximum edge capacity in network N.

iii. H is the set H of neighbors of vertex v in network N.

iv. c[w] is the capacity for each edge {v, w} incident at vertex v in N.

The program of each vertex v also has three variables: p.v, d.v, and f.v. When the protocol
terminates, p.v is the parent of vertex v in the maintained maximum flow tree T, d.v is the number of
edges on the path from vertex v {0 the root r in tree T, and f.v is the flow of v.

The program of each vertex v has two actions as follows.

begin <action> [] <action> end
Each of the two actions is of the following form.

<guard.w> --> <statement.w>
where w is a parameter that denotes a neighbor of v, <guard.w> is a boolean expression over the
variables of v and the variables of w, and <statement.w> is a sequence of assignment statements that
assign values to variables of v based on the current values of the variables of v and the variables w.

An action "<guard.w> --> <statement.w>" is enabled (for execution) when there is a neighbor W
of v that makes the boolean expression <guard.w> frue. An enabled action is executed by executing the

sequence of assignment statements in its <statement.w>.

The program of any vertex v, other than the root r, in network N is as follows.

constant
D ; integer,
F integer,
H : set {wlw is a neighbor ofvinN },
c array [H] of 0.F /* c[w] = capacity of {v, w} ¥

variable

pavio i H, /* parent of v in T */
div 15l 210820 /* distance of v from r in T*/
fv d 0.F /* flow of v in T*/
parameter
w : H /* a neighbor of v*/
begin
pv=w A
(d.v#min {d.w+1,D} or f.v#min {f.w, c[w]})
-—>
d.v:=min {dw+1,D};
f.v :=min {f.w, c[w]}
1 pVEW P
d.w<D-1 " (dv=D or (d.w+1-D*min {f.w, c[w]}) < (d.v - D*f.v))
-->
p.Vi=w;
d.v:=min {dw+1,D};
f.v :=min {f.w, c[w]}
end

This program has two actions. In the first action, vertex v detects that its distance d.v from the
root or its flow f.v is not consistent with that of its parent. In this case, vertex v updates both d.v and f.v
to be consistent, respectively, with d.w and f.w of its parent w.

In the second action, vertex v detects that it has a neighbor w such that the following three
conditions hold. First, w is not the current parent of v. Second, the distance from the root to w is less
than D-1. Third, if w is to become the parent of v, then v will either have more flow or will have the
same flow and a smaller distance from the root. In this case, vertex v makes w its parent and updates its
variables d.v and f.v accordingly.

The program for the root vertex r has only two constants, D and F, and two variables, d.r and f.r.
This program is as follows.

constant

D g integer,
F ate integer
variable
dr - 0..D, /* distance of r from 1 */
fr : 0.F /* flowofrin T %/
begin
dr#0 or fr#F -> dr:=0; fr =F
end
The one action in this program ensures that variables d.r and f.r are assigned the two values 0 and
F, respectively.

A proof of the correctness and stabilization of this protocol is presented in [7]. This proof is
sirnilar to those given in [1], [2], and [3].
4. Routing Using the Maximum Flow Tree Protocol

From the above protocol, each vertex v in network N knows its parent vertex p.v in the
maintained maximum flow tree T. When a virtual circuit is to be established through a vertex v (to the
root vertex r), vertex v routes the circuit through its parent vertex p.v in the maximum flow tree. In other
words, the circuit is established over the edge {v, p.v 3.

Each established virtual circuit is of some capacity. Thus, establishing a virtual circuit with a
capacity cp decreases the remaining capacity in each edge along the circuit by the value cp. Similarly,
when an established circuit with capacity cp is removed, the remaining capacity in each edge along the
circuit is increased by the value cp. ‘

Each vertex v keeps track of the remaining capacity cr{w] for each edge {v, w} incident at v in
the network. Vertex v follows the next two rules to keep its remaining capacity array cr current.

i When a virtual circuit with capacity cp is established over an edge {v, W}, then vertex v
updates its cr array as follows.
cr[w] :=cr[w] - cp
Also, vertex w updates its cr array as follows.
cr[v] :=cr[v] - cp

(This can happen only when both cr[w] in v and cr[v] in w are greater than cp.)

ii. When a virtual circuit with capacity cp that was established over an edge {v, w} is
removed, then vertex v updates its cr array as follows.
.cr[w] :=cr{w] +cp
Also, vertex w updates its cr array as follows.
cr[v] :==cr[v] +cp

As the remaining capacity cr arrays become very different from the capacity c¢ arrays used in
maintaining the maximum flow tree, the maintained tree is no longer a maximum flow tree. Therefore,
the maintained tree needs to be updated periodically.

One protocol for updating the maintained maximum flow tree is as follows. Each node in the
network periodically uses its cr array to update its ¢ array by executing the statement c := cr.
Unfortunately, whenever a node executes such a statement, the original maximum flow tree protocol
may start executing and cause the maintained tree to lose its property of being a tree for some time, until
the protocol finally converges to a new tree.

In this paper, we are interested in protocols for updating the maintained maximum flow tree such
that the maintained tree is always a tree, even when it is being updated. One such protocol is discussed

in the next section.

S. Adaptive Maximum Flow Tree Protocol
In this section, we present a protocol for adapting the maximum flow tree to changes in the
remaining channel capacities. This protocol proceeds in successive rounds: round.0, round.1, round.2, ...

In each odd round (i. e. round.1, round.3, ...), every vertex uses its cr array to update its c array,
and enables its first action in the original maximum flow tree protocol. Note that these first actions,
when executed, do not change the maintained tree. They merely compute the correct flow along every
path in the maintained tree. The round terminates when the values of variables d.r and f.r are 0 and F;
respectively, and the values of variables d.v and f.v of each vertex v, other than the root r, are consistent
with those of its parent w in the maintained tree as follows.

dv = min{d.w + 1,D}
fv = min{f.v, c[w]}

Recall that at the beginning of an odd round, each c array is assigned the value of the corresponding cr
array. Thus at the end of the round, the maintained tree may not be a maximum flow tree with respect to
the new c arrays.

In each even round (i. e. round.0, round.2, ...), every vertex enables its two actions in the original
maximum flow tree protocol. Although the maintained tree may be updated in this round, it can be
shown that each action execution in this round keeps the maintained structure a tree. The round

terminates when the values of variables p.v, d.v, and f.v of every vertex v define a maximum flow tree.

To keep track of the current round, each vertex v has a variable s.v whose value is the number of
rounds executed so far. To determine whether the current round is odd or even, vertex v needs only to
check whether or not s.v mod 2 equals 0.

Before initiating the next round, the root vertex r waits long enough until all activities in the
current round have ceased. Then the root increments its variable s.r to start the next round. Each other
vertex v starts to participate in the next round, when it observes that the value of s.w of a neighbor w is
larger than the value of its own 8.V.

The program of any vertex v, other than the root r, in network N is as follows.

constant
D : integer,
F ;i integer,
H - set {wlw is a neighbor ofvinN }
input
cr - array [H] of 0..F
variable
c : array [H] of 0..F,
pv H, /* parent of v in T */
dv : 0..D, /* distance of v from r in T*/
fv : 0..F, /* flow of v in T*/
s.V - integer /*seq. number of round*/

parameter

w i H /*a neighbor of v¥/
begin
/*start an odd round*/
sv<sw " swmod2=0
-
8.V i=8.W;
C:=Cr
1 /*execute in each round*/
S.V=sw A
pv=w &
(d.v#min {dw+1,D} or f.v#min {f.w, c[w]})
-
dv:=min {dw+1,D};
f.v :=min {f.w, c[w]}
1 /*start an even round*/
s.v<sw " swmod2=0
iy
S.V:i=8sw
1 /*execute in each even round*/
s.v=sw ” svmod2=0 *
pV#W A
d.w<D-1 A (dv=D or (d.w+ 1-D*min {f.w, c[w]}) < (d.v - D*fv))
-— .
p.Vi=w;
d.v:=min {d.w+1,D};
f.v :=min {f.w, c[w]}
end

The program of vertex v has four actions. In the first and third actions, vertex v detects that the
value of variable s.w of a neighbor w is larger than its own s.v, indicating that the next round has started.
In this case, v assigns its s.v the value of s.w, and if s.w mod 2 0 indicating that the new round is odd,
v uses its cr array to update its c array.

The second action in this program is the same as the first action in the original maximum flow
tree protocol except for adding the conjunct (s.v = s.w) to the guard. The fourth action in this program is
the same as the second action in the original maximum flow tree protocol except for adding the conjunct
(s.v=s.w ” s.vmod % 0) to the guard.

The program of the root vertex r is as follows.

constant
D : integer,
F : integer,
H : set {wlw is a neighbor of rin N }
variable
dr s 0.D, /* distance of r from r */
fr : 0..F /* flow of r in T*/
S.I : integer
parameter 5
w : H /*a neighbor of r*/
begin

timeout no other action in the network is enabled --> s.r:=s.r+ 1
N SI<S.W =-> S.I:=S8W

0 dr#0 or fr#F -> dr:==0; fr:=F
end

The program of the root r has three actions. In the first action, when r is certain that the activities
of the current round have terminated, it starts a new round by incrementing the value of s.r by one. This
action is called a timeout action because it can be implemented using time-outs as discussed in Section
7. In the second action, r observes that its s.r has a smaller value than s.w of some neighbor w. This
observation indicates that an error has occurred, as the value of s.r should always be equal or larger than
the value of s.v for any vertex v in the network. Thus, r corrects the observed error by assigning s.v the
value of s.w. The third action of r is identical to the third action of r in the original maximum flow tree
protocol.

6. Correctness of the Adaptive Tree Protocol

In this section, we discuss some interesting properties of the adaptive maximum flow tree
protocol. Our presentation starts with some definitions concerning the states, transitions, and
computations of this protocol.

A state of the adaptive maximum flow tree protocol is defined by a value for each variable in
each vertex in the protocol. The value of a variable is from the domain of values for that variable.

A state of the protocol is called odd, or even, iff in that state, variable s.r in the root r has an odd
value, or even value, respectively.

A state of the protocol is called balanced iff in that state, the following two conditions are

satisfied.
1. For every vertex v, s.v = s.r, where r is the root.
ii. Each action of each vertex, other than the first action of the root, is disabled (and so

cannot be executed).

It is straightforward to show that the following two conditions are satisfied in any balanced state.

i For the root r,
dr = 0
fr = F
ii. For every vertex v, other than the root r, there is a neighbor w such that
S.V = ST
pv = w
dv = min {d.w+ 1,D}
fv = min {f.w, c[w]}

A balanced state is called a milestone iff in that state, the values of the p.v variables, where v is
any vertex other than the root r, define a tree whose root is r.

A milestone state is called a target iff in that state, the values of the p.v variables, where v is any
vertex other than the root r, define a maximum flow tree whose root is r.

A triple (s, c, s') is called a transition of the protocol iff the following three conditions are
satisfied.

i. s and s' are two states of the protocol.

ii. c is an action of some vertex in the protocol.

10

iii. Executing action ¢ when the protocol is in state s yields the protocol in state s'.
States s and s' are called the pre-state and post-state of the transition, respectively.

An infinite sequence (s.1, c.1, §.9, 02) 8 called a computation of the protocol iff the
following three conditions are satisfied.

1. s.1, s.2, ... are states of the protocol.
il. c.1, c.2, ... are actions in some processes in the protocol.
iii. Every triple (s.i, c.1, s.(i+1)) in the sequence is 2 transition of the protocol.

Next, we present five interesting properties of an arbitrary computation of the protocol. Consider
an arbitrary computation C of the protocol, and let fori=0, 1, ... , T.i denote the i-th occurrence ofa
transition, if any, whose action is the timeout action of the root 1, in computation C. Also, let S.i be the
pre-state of transition Ti,fori=0,1,...

Lemma 1: For every k, k = 0,1, ..., computation C has a transition T k.

Lemma 2: S.0 is a balanced state.

Lemma 3: If S.0 is an odd balanced state, then for every k. k=0, Lo s
S.(2*k + 1) is an even target state, and
S.2*k + 2)isan odd milestone state.

Lemma 4: If S.0 is an even balanced state, then S.1 is an odd balanced state, and for every k,k=0,1,..

>

S.(2*¥k + 2) is an even target state, and
S.(2*k + 3) is an odd milestone state.

Lemma 5: In each state, that occurs after the first target state in computation C, the values of the p.v
variables define a tree whose root is .

=7_Refinements of the Adaptive Tree Protocol
The adaptive maximum flow tree protocol in Section 5 admits a number of refinements that can

make it attractive in some of applications. In this section, we briefly discuss three of these refinements.

First, this protocol can be extended to allow a network to have a multiple maximum flow trees
such that each vertex in the network is the root of some tree. With this extension, virtual circuits can be

11

established from any vertex to any other vertex in the network. This extension can be achieved by
making variables p.v, d.v, f.v, and s.v for every vertex v arrays, rather than single variables, as follows.

variables
p.v : : array [V] of H,
dv array [V] of 0..D,
fv : array [V] of O..F,
S.V : array [V] of integer

In these declarations, V is the set of all vertices in the network. Thus, p.v[w] is the parent of vertex v in
the tree whose root is w, d.v[w] is the distance from vertex v to vertex w in the tree whose root is w, and
SO on.

Second, there are two methods to implement the timeout action of the root r in the adaptive
maximum flow tree protocol. In one method, time-outs are used as follows. After the root r increments
its variable s.r, it waits long enough until it is certain that all activities in the new round have terminated,
before it times out and increment s.r one more time to initiate the next round. In the other method, the
protocol is augmented with an algorithm for detecting that all actions, other than the timeout action of
the root, have terminated. Several stabilizing termination detection algorithms have been proposed
earlier, for example [6] and [10]; and any of them can be augmented with our protocol to implement the
timeout action.

Third, instead of using an integer sequence number s.v for every vertex v, binary sequence
numbers can be used in the adaptive maximum flow tree protocol. However, to keep the protocol
stabilizing, the protocol needs to be augmented with another protocol for maintaining a shortest path tree
whose root is r. (One such protocol is discussed in [2].) Let q.v be the parent of any vertex v, other than
the root r, in the shortest path tree. Then, the conjunct (s.v < s.w) in the gua.rds of the first and third
actions of vertex v is replaced by the guard (s.v # s.w * q.v = w). It is straightforward to show that the
resulting protocol is stabilizing.

References
[1] A. Arora and M. G. Gouda, "Distributed Reset", IEEE Transactions on Computers, Vol. 43, No. 9,
September 1994, pp 1026-1039.

[2] A. Arora, M. G. Gouda, and T. Herman, "Composite Routing Protocols", Proc. of the Second IEEE
Symposium on Parallel and Distributed Processing, 1990.

[3] N. S. Chen, F. P. Yu, and S.T. Huang, "A Self-Stabilizing Algorithm for Constructing Spanning
Trees", Information Processing Letters, Vol. 39, pp. 147 - 151, 1991.

12

[4] C. E. Chow, J. D. Bickell, and S. Syed, "Performance Analysis of Fast Distributed Link Restoration
Algorithms", Accepted in the International Journal of Digital and Analog Communications Systems,
1994. |

[5] T. H. Cormen, C. E. Leiserson, and R. L. Rivest, Introduction to Algorithms, MIT Press and
McGraw-Hill, 1990.

[6] M. G. Gouda and M. Evangelist, "Convergence/Response Tradeoffs in Concurrent Systems", Proc.
of the Second IEEE Symposium on Parallel and Distributed Processing, 1990.

[7]1 M. G. Gouda and M. Schneider, "Stabilization of Maximum Flow Trees", Invited Talk, Proceedings
of the third Annual Joint Conference on Information Sciences, 1994, pp. 178-181. A full version was
submitted to the journal of Information Sciences.

[8] M. Schneider, nSelf-Stabilization", ACM Computing Surveys, Vol. 25, No. 1, March 1993.

[9] M. Schneider, Ph. D. Dissertation, The University of Texas at Austin, in preparation, 1995.

[10] G. Varghese, nSelf-Stabilization by Counter Flushing", Proceedings of the 1994 ACM Symposium
on Principles of Distributed Computing.

13

—

-

L.i

Paper Number 3

SuperStabilizing Protocols for Dynamic Distributed Systems

Shlomi Dolev and Ted Herman

i i . —— B IEFaNES et g _ m i ,. . . — . T w ..fﬂ .H.d |

SuperStabilizing Protocols for Dynamic Distributed Systems

(Extended Abstract)
Shlomi Dolev™ Ted Herman'
Ben-Gurion University University of Iowa
dolev@cs.bgu.ac.il herman@cs.uiowa.edu
Abstract

Two aspects of reliability of distributed protocols are a protocol’s ability to recover from transient faults and a
protocol’s ability to function in a dynamic environment. Approaches for both of these aspects have been separately
developed, but have drawbacks when applied to an environment that has both transient faults and dynamic changes.
This paper introduces definitions and methods for addressing both concerns in the design of systems.

A protocolis superstabilizing if it is (2) self-stabilizing, meaning that it is guaranteed to respond to an arbitrary
transient fault by eventually satisfying and maintaining a legitimacy predicate, and (1) it is guaranteed to satisfy
a passage predicate at all times when the system undergoes topology changes starting from a legitimate state.
The passage predicate is typically a safety property that should hold while the protocol makes progress towards
re-establishing legitimacy following a topology change.

Specific contributions of the paper include: the definition of the class of superstabilizing protocols; metrics
for evaluating superstabilizing protocols; superstabilizing protocols for colouring and spanning tree construction;
a general method for converting self-stabilizing protocols into superstabilizing ones; and a generalized form of a
self-stabilizing topology update protocol which may have useful applications for other research.

1 Introduction

The most general technique enabling a system to tolerate arbitrary transient faults is self-stabilization: a protocol
is self-stabilizing if, in response to any transient fault, it converges to a legitimate state in finite time. The charac-
terization of legitimate states, given by a legitimacy predicate, specifies the protocol’s function. Such protocols are
generally evaluated by studying the efficiency of convergence, which entails bounding the time of convergence toa
legitimate state following 2 transient fault. Other aspects of convergence, for instance safety properties, are of less
interest since arbitrary transient faults can falsify any non-trivial safety property.

The model of a dynamic system is one where communication links and processors may fail and recover during
normal operation. Protocols for dynamic systems are designed to cope with such failures and recovery without global
reinitialization. These protocols consider only global states that are reachable from a predefined initial state under
a constrained sequence of failures; under such an assumption, the protocols attempt to cope with failures with
as few adjustments as possible. Thus, whereas self-stabilization research largely ignores the behaviour of protocols
between the time of a transient fault and restoration to a legitimate state, dynamic protocols make guarantees about
behaviour at all times (during the period between a failure event and the completion of necessary adjustments).

Superstabilization

Superstabilizing protocols combine benefits of both self-stabilizing and dynamic protocols. We retain the idea of
a legitimate state, but partitition illegitimate states into two classes, depending on whether or not they satisfy a
passage predicate. Roughly speaking, a protocol is superstabilizing if it is (7) self-stabilizing, and (4¢) when started

=Part of this research was supported by TAMU Engineering Excellence funds and by NSF Presidential Young Investigator Award CCR-9396098.
tThis research was supported in part by the Netherlands Organization for Scientific Research (N'WO) under contract NF 62-376 (NFI project
ALADDIN: Algorithmic Aspects of Parallel and Distributed Systems).

in a legitimate state and a topology change occurs, the passage predicate holds and continues to hold until the
protocol reaches a legitimate state.

The passage predicate is specified along with a class of topology changes. Since a legitimacy predicate is dependent
on system topology, a topology change will typically falsify legitimacy. The passage predicate must therefore be
weaker than legitimacy, -but strong enough to be useful; ideally, the passage predicate should be the strongest
predicate that holds when a legitimate state undergoes any of a class of topology change events. One example for
a passage predicate is the existence of at most one token in a mutual exclusion task; whereas in a legitimate state
exactly one token exists, a processor crash could eliminate the token yet not falsify the passage predicate. Similarly,
for the leader election task, the passage predicate could specify that at most one leader exists.

Superstabilizing protocols are evaluated in several ways. Of interest are the worst-case convergence time, i.e., the
time required to estabilish a legitimate state following either a transient fault or a topology change, and the scope of
the convergence in terms of how much of the network’s data must be changed as a result of convergence. We classify
superstabilizing protocols by the following complexity measures: stabilization time is the maximum amount of
time it takes for the protocol to reach a legitimate state; superstabilization time is the maximum amount of time
it takes for a protocol starting from a legitimate state, followed by a single topology change, to reach a legitimate
state; adjustment measure is the maximum number of processors that must change their local states, upon a
topology change from a legitimate state, so that the protocol is in a legitimate state.

Background and Motivation

Many distributed protocols have been designed to cope with continuous dynamic changes [AAG87, AGH90, AM92,
AGR92]. These protocols make certain assumptions about the behavior of processors and links during failure and
recovery; for instance, most of them do not consider the possibility of processor crashes and they assume that every
corrupted message is identified and discarded. If failures are frequent, these restrictive assumptions can be too
optimistic. i

A number of researchers [DIM93, KP93, APV91] suggest a self-stabilizing approach to deal with dynamic systems.
In these approaches, a state following a topology change is seen as an inconsistent state from which the system will
converge to a state consistent with the new topology. Although self-stabilization can deal with dynamic systems, the
primary goal of self-stabilizing protocols is to recover from transient faults, and this view has influenced the design
and analysis of self-stabilizing protocols. For instance, for a correct self-stabilizing protocol, there are no restrictions
on the behavior of the system during the convergence period: the only guarantee is convergence to a legitimate
state. :

Self-stabilization’s treatment of a dynamic system differs from that of the dynamic protocols cited above in the
way that topology changes are modelled. The dynamic protocols assume that topology changes are events signaling
changes on incident processors. Self-stabilizing protocols take a necessarily more conservative approach that is
entirely state-based: a topology change results in a new state from which convergence to a legitimacy is guaranteed,
with no dependence on a signal. Yet when the system is in a legitimate state and a fault happens to be a detected
event, can the behavior during the convergence be constrained to satisfy some desired safety property? For instance,
Is it possible in these situations for the protocol to maintain a “nearly legitimate” state during convergence?

The issue can be motivated by considering the problem of maintaining a spanning tree in a network. Suppose
the spanning tree is used for virtual circuits between processors in the network. When a tree link fails, the spanning
tree becomes disconnected; yet virtual circuits entirely within a connected component can continue to operate. We
would like to restore the system to have a spanning tree so that existing virtual circuits in the connected components
remain operating; thus a least-impact legitimate state would be realized by simply choosing a link to connect the
components.

One thesis of this paper is that self-stabilizing protocols can be designed with dynamic change in mind to improve
response. Self-stabilizing protocols proposed for dynamic systems do not use the fact that processor can detect that it
is recovering following a crash; consequently there is no possibility of executing an “initialization” procedure during
this recovery.! A key observation for this paper is that a topology change is usually a detectable event; and in cases
where a topology change is not detected, we use self-stabilization as a fall-back mechanism to deal with the change.
The remainder of the paper illustrates aspects of superstabilization with selected protocols and a general method
that converts self-stabilizing protocols into protocols that are superstabilizing.

2 Dynamic System

A system is represented by a graph where processors are nodes and links are (undirected) edges. An edge between
two processors exists iff the two processors are neighbours; processors may only communicate if they are neighbours.
Each processor has a unique identifier taken from a totally ordered domain. We use p, g, and T to denote processor
identifiers. Processors communicate using registers, however application of the model to a message-passing system
is intended; we outline an implementation of the register model in terms of message-based constructions in [DH95).

Associated with each processor p are code, local variables, a program counter, a shared register, and an input
variable N, which is a list of processors g that are neighbours of p. Invariantly, neighbourhoods satisfy p ¢ N, and
q € N, & p € Ng. A processor can write to its own shared register, but may only read shared registers belonging
to neighbouring processors. The code of a processor is a sequential program; a program counter is associated with
each processor. An atomic step of a processor (in the sequel referred to as steps) consists of the execution of one
statement in a program. In omne atomic step, a processor performs some internal computation and at most one
register operation. A processor has two possible register operations, read and write.

Our model specifies that a step consists of a statement execution; we have in mind a conventional instruction-
execution architecture, where each statement corresponds to some low-level code. However, to make presentation
of protocols concise, we give descriptions at a higher level in terms of programs with assignment statements and
control structures (forall, do, etc.); it should be understood that these descriptions can be resolved into lower-level
programs where statements translate into atomic steps. In the protocol presentations, we also make the convention
that advancing the program counter beyond the last statement of a program returns the program counter to the
program’s first statement; thus each program takes the form of an infinite loop.

Local variables of processors are of two types: variables used for computations and field image variables. The
former are denoted using unsubscripted variable names such as x, y, and A. The field image variables refer to fields of
registers; these variables are subscripted to refer to the register location, for instance e, refers to a field of processor
p’s register and y, refers to a field of processor q’s register. Program statements that assign to field images or use
field images in calculations are not register operations: the field image is essentially a cache of an actual register
field. A processor p’s read(q) operation, defined for q € N, atomically reads the register of processor q and assigns
all corresponding field images (e.g. €q Yo etc.) at processor p. A write operation atomically sets all fields of p’s
register to current image values. For convenience, we also permit a local calculation to specify field image(s) with a
write statement, for instance write(e, = 1) sets field image ep and writes to p's register.

The state of a processor p fully describes the values of its local variables, program counter, shared register, and

its neighbourhood Np (although a processor cannot change its neighbourhood, it is convenient to include N, in the
state of p for subsequent definitions). In the sequel we occasionally refer to the state of a processor as a local state.

1Moreover, some systems do provide a “start” signal. Self-stabilizing protocols do not specify any special starting state or action upon receiving
such a signal. Note that a computation invoked by a start signal resembles the case of dynamic system starting with all processors simultaneously
recovering from a crash.

The state of the system is a vector of states of all processors; a system state is called a global state. For a global
state o and a processor q, let o[q] denote the local state of q in state ¢. A computation is a sequence of global states
© = (81,0;,--) such that for i = 1,2,--- the global state Bi+1 is reached from 6; by a single step of some processor.
A fair computation is a computation that is either finite or contains infinitely many steps of each (non-crashed)
processor.

We write o - P to denote that global state o satisfies predicate P. A legitimacy predicate £ is typically specified
with respect to some property of interest encoded by P; for instance, P can specify that exactly one processor has a
token for mutual exclusion. The predicate £ specifies permissible values of all register fields, program counters, and
local variables so that P remains invariantly true in a computation.

A system topology is a specific system configuration of links and processors. Fach processor can determine the
current status of its neighbourhood from its local state (via Np); thus the system topology can be extracted by a
program from a global state of the system. Let 7. denote the topology for a given global state . Dynamic changes
transform the system from one topology 7.x to another topology 7.8 by changing neighbourhoods and possibly
removing or adding processors.

A topology change event is the removal or addition of a single neighbourhood component (link, processor, or
processor and subset of its incident links), together with the execution of certain atomic steps specified in the
sequel. Topology changes involving numerous links and processors can be modelled by a sequence of single change
events. The crash of processor p is denoted crashy; the recovery of processor p is denoted recovy; crash,, and recov,,
denote link failure and recovery events. In our model, a processor crash and a link crash are indistinguishable to a
neighbour of the event: if p and q are neighbours and crashy, occurs, then we model this event by crash,, with respect
to reasoning about processor q. Similarly, a recov, event is indistinguishable from a recovp, event with respect to
reasoning about a neighbour q of p. We say that a topology change event £ is incident on p if € is recovy, crashpg,
Or recovpe. We extend this definition to be symmetric: € is incident on p iff p is incident on £.

For most of the protocols presented in this paper, each processor is equipped with an interrupt statement, which
is a statement concerned with adjusting to topology change. A topology change £ incident on P causes the following
to atomically occur at p: the input variable Np is changed to reflect £, the interrupt statement of the protocol is
atomically executed, and p’s program counter is set to the first statement of its program. Note that if £ is incident
on numerous processors, then all incident neighbourhoods change to reflect £ and all Pprocessors execute the interrupt
statement atomically with event £. Thus the transition by £ from T.xx to 7.f changes more than neighbourhoods;
states o and B also differ in the local states of processors incident on £ due to execution of interrupt statements at
these processors. -

A trajectory is a sequence of global states in which each segment is either a fair computation or a sequence of
topology change events. For purposes of Teasoning about self-stabilization, we follow the standard method of proving
properties of computations, not trajectories. Dynamic change is handled indirectly in this approach: following an
event £, if there are no further changes for a sufficiently long period, the protocol self-stabilizes in the computation
following £ in the trajectory.

3 Superstabilization

The definition of superstabilization takes the idea of a “typical” change into account by specifying a class A of
topology change events. A self-stabilizing procotol is superstabilizing with respect to events of type A, if starting
from a legitimate state followed by a A-event, the passage predicate holds continuously:

Definition 3.1 A protocol P is superstabilizing with respect to A iff P is self-stabilizing and for every trajectory &
beginning at a legitimate state and containing a single topology change event of type A, the passage predicate holds
for every o € &. m]

Although Definition 3.1 considers trajectories with a single change, we emphasize that the intent is to handle trajec-
tories with multiple changes (each change is completely accomodated before the next change occurs). Our definition
could be modified to state this explicitly, however we have chosen this simpler form to streamline presentations.

A primary motivation for superstabilization is the notion of a “low-impact” reaction by a protocol to dynamic
change. Intuitively, this means that changes necessary in response to dynamic change should affect relatively few
processors and links. To formalize this notion, we introduce an adjustment measure. To define an adjustment, we
return to the notion of legitimacy and a predicate P that effectively characterizes the legitimacy predicate L. Let
var(P) be the minimal collection of variables and fields upon which P depends. Call O the state-space ranging
only over the var(P) data. The expression 5[0] denotes a system state projected onto the © state-space. Now we
consider a function F : @ — O. Function F maps states 5[0] to states o[O)] that satisfy o L, where § is any state
that can be obtained from a legitimate state followed by a A-topology change . The idea is that F represents the
strategy of a superstabilizing protocol in reacting to an event £, choosing a new legitimate state following dynamic
change. We rank a function F by means of an adjustment measure R. The adjustment measure R is the maximum
number of processors having different O-states between o]0] and F(o[0)), taken over all states o derived from some
state § F L followed by some change event £ € A. A definition of F with a small adjustment measure R implies that
few adjustments are necessary in response to a topology change.

A superstabilizing protocol respects F if the protocol implements F, meaning that it responds to a dynamic
change by some computation © taking the system from a state o[O] to a state 7 (6{©)) and changes O-states at the
minimum number of processors necessary in order to establish the new legitimate state given by F. If a protocol
respects F, then we say that the protocol has adjustment measure R.

To describe the time complexity of a protocol, the notion of a cycle is introduced. A cycle for a processoT P
is a minimal sequence of steps in 2 computation so that an iteration of the protocol at processor p executes the
program for p from first to last statement. All the programs of this paper are constructed so that a processor p’s
cycle consists of reading all of p’s neighbour registers, some local computation, and writing into p’s register. The
time-complexity of a computation is measured by rounds, defined inductively as follows. Given a computation @,
the first round of & terminates at the first state at which every processor has completed at least one cycle; round
i+ 1 terminates after each processor has executed at least one cycle following the termination of round i.

The stabilization time of a protocol is the maximum pumber of rounds it takes for the protocol to reach a
legitimate state starting from an arbitrary state. The superstabilization time is the maximum number of rounds
it takes for a protocol starting from an arbitrary legitimate state o, followed by an arbitrary A-change event £, to
again reach a legitimate state. '

4 Superstabilizing Colouring

This section exercises the definitions and notation developed in Sections 2 and 3 for a simple allocation problem.
Let C be a totally ordered set of colours satisfying [C| > 1+ A, where Ais a bound on the number of neighbours
a processor has in any trajectory. Each processor p has a register field colourp. The predicate P of interest is:
colour,, € C for every processor p and no two neighbouring processors have equal colours. A legitimate state for the
colouring protocol is any state such that (i) predicate P is satisfied, and (ii) for each computation that starts in such
a state, no processor changes colour in the computation. To define the passage predicate, we extend the domain of

self-stabilizing section :
S1 A,B:=0,0
S2 forall g€ N,
S3 do read(q); A := AU coloury; if q>p then B := B U colour, od
54 if ((colour,=L A LEB) V (colour, #L A colour, € B))
then colour, := choose(C\ A)
S5 write
interrupt section :
El write (if (& =recov, V (£ =recov,, A p>q)) then colour, := 1)

Figure 1: Superstabilizing Colouring Protocol for Processor p.

a colour field to include L& C. The passage predicate Q is: colour, € CU {L} for every processor p and, for any
neighbouring processors p and q, colour, = colour, iff colour, =1.

Figure 1 presents a protocol for the colouring problem. The function choose (S) selects the minimum colour
from a set S (and is undefined if S is empty). The protocol of Figure 1 has two parts: one part is a self-stabilizing
protocol, modified to deal with the L element; the other part lists the interrupt that deals with topology change
events. The self-stabilizing section perpetually scans for a colour conflict with the set of neighbouring processors
having a larger identifier. The interrupt statement writes to the register, conditionally changing the colour, field in
case the topology change event is a restart of the processor or a link,

Theorem 1 The colouring protocol is self-stabilizing and converges in O(n) rounds.

Proof: We show by induction on the number of processors, that following round i, 0 < i < n, the i largest-
identifier processors have permanent, non-L colour assignments such that no conflict with a neighbour of higher
identity exists among these i processors. The basis for the induction is trivial since the empty set of processors
satisfies the assertion. Now suppose the claim holds following round k. We examine the effect of round (k+1) with
the respect to processor r, where r is the (k+1)" largest processor identifier. In this round, processor r chooses some
non-1 colour differing from any colour of a neighbouring processor with larger identity. The choice is deterministic,
based on the colours of the larger identities. By hypothesis, these larger identity colour assignments are permanent,
so following round (k + 1) and for all subsequent rounds, processor t's colour is fixed and differs from the colours of
all neighbours of larger identity. Thus after (n + 1) rounds, all processors have permanent colour assignments. 0O

The class of topology events considered for the protocol is A(k), which includes any crash event, any link recov,,
event, and any recov, event subject to the restriction that at most k links incident on p recover at the same instant
that p recovers; thus A(0) allows only processor or link recovery events that are not simultaneous, whereas A(A)
includes the possibility of a processor and all its links Tecovering as a single event.

Theorem 2 The colouring protocol is superstabilizing with a superstabilizing time of O(k) and adjustment measure
R = (k+1), where A(k) is the class of topology change events.

Proof: In the case of any crash event, the protocol remains in a legitimate state. In the case of a recov event,
for any new link introduced by the event, one or both of the incident processors has colour L as a result; thus the
passage predicate holds. Moreover, at most (k + 1) processors can have colour L as a result of the recov event; by
an argument similar to that given in the proof of Theorem 1, a legitimate state is obtained in O(k) rounds, and the
passage predicate holds invariantly in the computation; the adjustment measure R = (k + 1) follows from the fact
that only those processors incident on the change event adjust colour during the period of superstabilization. O

B self-stabilizing section :
S1 =% tyli="00, 1
S2 forall €N,

S3 do read(q); if x> (dg+wp) then X,y = (dg +Wpg), @ od
S4 if p=r then dp, tp = 0, r else dp, tp == %Y

S5 write '

interrupt section : skip

Figure 2: Superstabilizing Tree Protocol for Processor p.

The colouring protocol illustrates qualitative and quantitative aspects of superstabilization. The qualitative
aspect is illustrated by the fact that the convergence following a topology change does not violate a passage predicate.
This ensures better service to the user when no catastrophe takes place (i.e. in the absence of a severe transient
fault). Quantitative aspects can be seen by the O(k) convergence time and adjustment measure. The same protocol,
when started in an arbitrary initial state induced by a transient fault, might take O(n) rounds to converge and a
processor could change colours O(n) times during this convergence. Indeed if the superstabilizing component of the
protocol is removed, namely the interrupt statement, then O(n) rounds can be required for convergence following
even a single topology change event starting from a legitimate state.

5 Superstabilizing Tree

Constructing a spanning tree in a network is a basic task for many protocols. Several distributed reset procedures,
including self-stabilizing ones, rely on the construction of a rooted spanning tree to control synchronization. All
existing deterministic self-stabilizing algorithms to construct spanning trees rely on processor ot link identifiers to
select, for example, a shortest-path tree or a breadth-first search tree. In a dyna.mxc network, a change event can
invalidate an existing spanning tree and require that a new tree be computed. Although computation is required
when a change event crash,, removes one of the links in the current spanning tree, one would hope that a change
event recoverp, would require no adjustment to an existing spanning tree. Yet all the self-stabilizing spanning tree
algorithms we know (e.g., [DIM93, AG90, AK93]) construct a BFS or DFS tree and thus require, in some cases,
recomputation of the tree when a link recovers, regardless of whether the network currently has a spanning tree
or not. The reason is that a processor cannot locally “know” that the system has stabilized and must make a
deterministic choice of edges to be included in the tree. We propose a superstabilizing approach to tree construction.
The protocol given in this section successfully “ignores” all dynamic changes that add links to an existing spanning
tree or crash links not contained in the tree.

All trajectories considered in this section are free of crashy or recover, events; the number of processors remains
fixed at n and we give every PIocessoI access to the constant n. We also suppose that the network remains, at all
states in a trajectory, connected.

The basic idea of the protocol is the construction of a least-cost path tree to a processor designated as the root
of the tree. The key innovation of the protocol lies in the definition of link costs. Each link is assigned a cost in
such a way that links that are part of the tree have low cost whereas links outside the tree have high cost. Each
processor p has two register fields t, and dp. The field t, ranges over identifiers of processors. The register d,
contains a non-negative integer. The function w maps a pair of processor identifiers to an integer: wpq =1ift, =@
and wy, = N otherwise.

Figure 2 shows the code of the superstabilizing spanning tree protocol. The predicate P of interest for the tree

7

protocol is that (Vp,q: p £ 1 A tp =q: g € N,) and that the collection of tp variables {t,| p # r} represents
a spanning, directed tree rooted at r. A legitimate state for the tree protocol is any state such that (i) predicate
P is satisfied, and (ii) for each computation that starts in such a state, no processor changes a t, variable in the
computation.

Theorem 3 The spa.nniﬁg tree protocol self-stabilizes in O(n) rounds. (See Appendix for proof.)

We define the class of change events A for purposes of superstabilization to be any recovpg event or any crashy,
event such that neither t, = q nor t; = p holds at the moment of the crash,, event. The passage predicate Q for
the superstabilization property is identical to P.

Theorem 4 The spanning tree protocol is superstabilizing for the class A with superstabilization time O(1) and
adjustment measure R = 1. (See Appendix for proof.)

6 General Superstabilization

This section introduces a general method for achieving superstabilization with respect to the class A of single topology
changes. Our general method can be seen as a compiler that takes self-stabilizing protocol P and outputs a new
protocol P? that is both self-stabilizing and superstabilizing. This is done by modifying protocol P and superimposing
a new component called the superstabilizer. The superstabilizer uses, as a tool, a self-stabilizing update protocol.
The following subsection describes our update protocol, after which we give an overview of the superstabilizer.

Update Protocol

To simplify the presentation of our general method for superstabilizing protocols, we employ a self-stabilizing update
protocol. We view the update protocol as the simplest and clearest self-stabilizing protocol for large class of tasks
including: leader-election, topology update and diameter estimation. To describe the task of the update protocol,
Suppose every processor p has some field image x,; for the moment, we consider Xp to be a constant. The update
problem is to broadcast each %p to all processors. This problem is called topology update when the field Xp contains
all the local information about p’s links and network characteristics. Many dynamic system are already equipped
with a topology update protocol that notifies processors of the current topology; in such instances our general method
acts as an extension to this existing topology update. An optimal time (©(d) round) self-stabilizing solution to the
topology update is given in [SG89, Do93]. To ensure a desired deterministic property of the protocol, we assume
that the neighbourhood of a processor N, is represented as an ordered list.

Let each processor p have, in addition to Xp, a field e,, where e, contains three-tuples of the form (q,u,k), in
which q is a processor identifier, u is of the same type as x,, and k is a non-negative integer. Let distr(p,q) be the
minimum number of links contained in a path between processors p and q in topology 7'; the third component of a
tuple is intended to represent the dist-value for the processor named in the tuple’s first component. We make some
notational conventions in dealing with tuples: with respect to a given (global) state, (q,%,,k) is a tuple whose second
component contains the current value of field x,. In proofs and assertions, we specify tuples partially: (q,,) € €
is the assertion that processor p’s e-field contains a tuple with q as its first component. Each processor uses local
variables A and B that range over the same set of tuples that e, does. For field image e, and set variables A and B,
we assume that set operations are implemented so that computations on these objects are deterministic.

The update protocol’s code uses the following definitions. Let processors(A) be the list of processor identifiers
obtained from the first components of tuples in A. Let mindist(q, A) be the first tuple in A having a minimal third

Cl A,B:=00

C2 forall q €N, do read(q); A:=AUg od

c3 A= A\\(P,**) A= A+ +{**1)

C4 forall q € processors(A) do B:=BU {mindist(q,A)} od
C5 B:=BU{(p,%p0)}; ep:= initseq(B)

C6 write '

Figure 3: Update Protocol for Processor p.

component of any tuple whose first component is g (in case no matching tuple exists, then mindist is undefined.)
Define A \ \(q,*,*) to be the list of tuples obtained from A by removing every tuple whose first component is d.
Define A + +(*,%,1) to be the list of tuples obtained from A by incrementing the third component of every tuple in
A. Define initseq(A) by the following procedure: (1) sort the tuples of A in ascending order of the third element of
a tuple; (2) from this ordered sequence of tuples, compute the maximum initial prefix of tuples with the property:
if {(q,u,k) and (q’ ,u’ k') are successive tuples in the prefix, then k' <k +1. Then initseq(A) is the set of tuples in
this initial prefix.

For the update protocol, we define a distance-stable state to be any state for which (1) each processor P has
exactly one tuple (a,v, dist(p,q)) in its ep field for every processor g in the network reachable by some path from
p in the current topology; (2) ep contains no other tuples; and (3) each computation that starts in such a state
preserves (1) and (2). A legitimate state for the update protocol is a distance-stable state in which requirement (1)
is strengthened to: each processor p has exactly one tuple (q,xq,dist('p, q)) in its ep field for every processor q —
in other words, the x-field images are accurate. Figure 3 presents the protocol.

Theorem 5 The update protocol of Figure 3 self-stabilizes in O(d) rounds. (see Appendix for proof).

A corollary of self-stabilization is that, if one of the x, fields is dynamically changed, the protocol will effectively
broadcast the new x, value to other processors. Of particular interest are some properties that relate a sequence of
changes to an x, field to the sequence X, values observed at another processor g. More specifically, if processor p
writes, over the course of a computation, the values ¢1,Cz,.-- into xp, and no processor q reads (via update images of
Xp) a value Ci and then later reads a value c; for j < k, then we call the update protocol monotonic. A monotonic
update protocol guarantees that the sequence of values in any field image is a subsequence of the values written
to the corresponding register field. It can be shown that the protocol Figure 3 is monotonic in any computation
starting from a legitimate state (by induction on a lexicographic measure composed of path length and the ordering
of links by a processor’s neighbourhood; essentially the deterministic ordering of links defines a broadcast tree). In
the context of a dynamic system, we could also require that monotonicity hold in any trajectory that begins with
a legitimate state. Unfortunately, the update protocol of Figure 3 does not have this stronger property; however, a
limited form called impulse monotonicity is satisfied.

Impulse Monotonicity. Let o be a legitimate state for the update protocol in a topology T where x, = Co at 0.
Let A be the state obtained by making a single topology change £ to T and the assignment X, := Ci1. Let ® bea
topology-constant computation originating with state A. Impulse monotonicity is satisfied if, for any states p and v
in ® such that p occurs before y: if processor q sees c; as the value of x, at state p, then q sees ¢; as the value of
x, at state 7y.

Impulse monotonicity is useful in the following way: if Xp is changed “slowly enough”, meaning that the protocol
successfully stabilizes between changes to X, then a FIFO broadcast of xp-values is obtained. In the sequel, we

introduce an acknowledgement mechanism so that a processor does not change the broadcast value of interest until
all other processors within a connected component have received the current value.

Theorem 6 The update protocol of Figure 3 enjoys impulse monotonicity. (Proof appears in [DH95].)

The Superstabilizer

The superstabilizer makes use of function F, described in Section 3, to determine a new legitimate state for protocol
P following a topology change £. It is the responsibility of the superstabilizer to “hide” £ from any processor in such
a way that no user of protocol P can observe a state inconsistent with the current topology; this is done by making
the global transition between legitimate states for different topologies effectively atomic, thus sparing procotol P
from any stabilization effort.

The superstabilizer consists of two components, a modified version of the update protocol and an interrupt
statement. Atomic steps of P and the update protocol are then interleaved. We modify P, as follows: each action of
P at processor p is guarded by a boolean variable freeze, so that when freeze, holds, no action of P is enabled at
processor p and its program counter remains static. Our superstabilizer ensures that, starting from any initial state,
all freeze fields eventually become false in the absence of topology changes.

The combination of the superstabilizer and modified protocol P results in a superstabilizing protocol P5. A
legitimate state for P* is any state in which: (1) the variables, fields and program counter with respect to P satisfy
LP (where LP is the legitimacy predicate for the base protocol P); (2) the update protocol component of the
superstabilizer is in a legitimate state (all e-fields have accurate tuples); (3) every freeze variable is false; and (4)
each computation that starts in such a state preserves (1)-(3).

The passage predicate for our general method is defined in terms of the freeze fields. For any state o, let warm(o)
denote the set of processors having freeze fields that are false. Let o[warm] be the vector of local states of PIrocessors
in warm(o). We call ¢ warm-legitimate if there exists a state Y and a topology 7.y, where vy - LP, such that
o[warm] = y[warm|. In words, ¢ is warm-legitimate if it appears to be a legitimate state (with respect to some
topology) when we disregard any processor p with freeze, = true. The passage predicate Q for the general method
1s that the protocol is in a warm-legitimate state.

The interface between the superstabilizer and P at processor p consists not only of the freeze , variable, but a
pseudo-variable snap,,, which is defined to be the collection, with respect to protocol P, of all local variables, shared
fields, and the program counter of P for processor P. The superstabilizer can read and write snap,. We denote by
snap a set of snap, variables, one for each processor. Our general method is, in brief, the following: after a topology
change, P is frozen at all processors and a snap value is recorded; subsequently a snap value appropriate for the
new topology is computed and each frozen processor is assigned its portion of the new snap value; and finally all
processors are thawed.

The programming notation given in Section 2 makes local images of register fields available to program operations:
such images can be of a processor’s own register or that of its neighbouring processors; for example, the code of
Figure 3 permits processor p to refer to e, for g € N,. The update protocol makes an image of each processor’s
x-field available to every other processor within a connected component. For the superstabilizer, we extend the
programming notation to allow any processor to refer to fields of any other processor. Thus processor p can refer
to x, for any q € processors(e,) by using images provided in the e-field’s tuples. Of course, these images may be
out-of-date, which necessitates synchronization measures in the superstabilizer; such synchronization is achieved in
phases to coordinate freezing and snapshots.

For convenience in describing the superstabilizer, we divide the x field into four subfields: Xp = [aphytpuy)
To control the phases of superstabilization, the subfield Qp is used; it is a ternary-valued subfield provided for the

10

three phases of superstabilization. These phases are: Phase 0 is the normal state of the superstabilizer, in which
protocol P is active and the superstabilizer is idle. When (Vp:: ap =0) holds, we consider the superstabilization to
be inactive (terminated). Phase 1 consists of freezing protocol P and collecting snapshots from the frozen processors;
also in this phase an election takes place among all processors incident on a topology change to determine a single
coordinator of the following phase. Phase 1 is active if (Ip == ap =1) and (Vp:: ap < 1). Phase 21is concerned
with computing a new global state for protocol P and distributing the new state to all processors. Phase 2 is active
(3 ap= 2), remains active until acknowledged by all processors, and thereafter terminates in order to resume
execution of Phase 0.

To detect progress of phases, we employ an acknowledgement subfield h,. This subfield is a vector of ternary
values whose elements are images known to p of other processor a-subfields: the protocol sets hy[r] to contain the
image of a,, as determined from p’s image of x, broadcast via the update protocol. Further, since h,, is broadcast
via the update protocol to every processor, it is possible for a processor r to test the status of every other processor’s
image of a,.

In addition to the a and h-subfields, we define additional subfields of x, to contain snap values. Subfield t,
contains a value of type snap,, which is the portion of the state of p that is related to P. We also define the subfield
u, to contain a global snap value, i.e., uy[r] contains a snap, value. We denote by s, the collection of all t. images
obtained from x, subfields.

To make a concise presentation, an additional device is used in the code of the interrupt statement. The
function refresh(e,) reproduces e, except that the value of the x, field is updated, ie., refresh(ep) = (€p \
\(p, %)) U {(P,%p,0)}-

The interrupt statement for the superstabilizer is given in Figure 4. In response to a topology change £ incident
on processor p, the program counter of the protocol is reset to S1, the neighbourhood N, is adjusted to reflect &,
and the write operation is atomically executed. This operation halts P by setting freeze , to true.

The remaining component of the superstabilizer consists of the combination of Figures 3 and 4,i.e.,itisa modified
update protocol. ‘Statements U1-U8 should be inserted between statements C3 and C4 to obtain the complete
protocol. All quantifications over processors in expressions (such as (Vq = ag = 0)) are implicitly quantified over

processors(A) U {p} in the superstabilizer code.

Theorem 7 Protocol P is self-stabilizing with self-stabilization time O(d + K), where K is the self-stabilization
time of protocol P. E

Sketch of proof: For simplicity we suppose the network to be connected. By the construction of P?, it suffices to
prove that the superstabilizer convergesin O(d) rounds to A = (Vq = —freeze o) and to show that A (or some stronger
predicate) is stable. Thereafter, in O(K) additional rounds, by base protocol P’s self-stabilization, P* stabilizes. Only
statement U8 of the protocol assigns to freeze if we show P* stabilizes to (Vq :: a, = 0), then by Theorem 5, all
a-field images are broadcast in O(d) rounds; all freeze variables are false in the following round. Notice that a, =0
is stable for any p, since none of U1-U8 assign to a, if ap = 0 holds. Therefore it suffices to show that some state
statisfying a, = 0 occurs for each processor q within O(d) rounds of any computation. Heading for a contradiction,
let processor T be a processor such that a, # O holds for more than O(d) rounds of some computation; because
none of none of U1-U8 assign a, := 1, yet a, = 1 is the precondition of assigning a, = 2 (see U2), we deduce that
a, # 0 holds continuously for more than O(d) rounds. Suppose ar = 2 holds continuously; by acknowledgements
from U5-U7 and stabilization of the update protocol, U3 is eventually assigns a, := 0, which is a contradiction.
It remains to consider that a, = 1. There may be more than one processor for which the a-field is continuously
1-valued; let t be such a processor of maximum identifier. By acknowledgements U5-U7 and the update protocol,
any processor q # t having a, =1 assigns a, := 0 at U1 within O(d) rounds (because q < t). Thus, after 0O(d)

11

Superstabilization Section:
UL if (ap=1A(3q: a#0 A q>p A (Yr: h[q] #0)))
then a, := 0
U2 if (ap=1 A (Ya: a#p: a;=0) A (Yq: hyfp] #0))
then ap, u, := 2, F(s,)
Us if (ap=2 A (Vq: hylp] £ 1))
then a, := 0
U4 forall q € processors(A)U {p}
do
Us if a;=0 then hulql.:= 0
ué if a;=1 A hy[q]=0 then h,[q] := 1
u7 if a;=2 A hy[q]=1 then hy[q], snap, := 2, u,p]|
od
U8 if (3q € processors(A) U {p} :: a, # 0)
then freeze, , tp, := true, snap,
else freeze, := false
Interrupt Section:
El write
ap = 1
freeze, = true
t, = snap,
4 o { 0 if & =recov,
5 3 refresh(e,) if & # recov,

Figure 4: Superstabilizer: Update Extension and Interrupt for p.

rounds, t is the only processor having a 1-valued a-field. But again, by acknowledgements U5-U7 and the update
protocol, t subsequently assigns a, := 2 at U2 within O(d) rounds, which is a contradiction. ! O

Theorem 8 Protocol P* is superstabilizing with superstabilization time O(a).

Sketch of proof: Consider a computation beginning from a state ¢ that is the result of a single topology change
event £ at a legitimate state. By E1, 0 a, =1 A freeze . holds for every r incident on £; thus ¢ is warm-legitimate.
As the update protocol broadcasts the 1-valued a-fields, statement U8 sets freeze , at all processors p within O(d)
rounds. Thanks to impulse monotonicity, the condition (349 :: a4 # 0) observed by update images is stable so long as
at least one processor does not change its 1-valued a-field. Within O(d) rounds, statement U1 assures that only one
processor t (per connected component) satisfies a; = 1; in at most O(d) subsequent rounds, by acknowledgements
and the update protocol, statement U2 executes a, := 2 at processor t. At this point we assert that all processors are
frozen; note also that each global state from ¢ to this point is warm-legitimate. Upon execution of U2, a new global
state is computed from combined snapshots. Although a, = 2 is not broadcast monotonically, statements U and U7
are coded in such a way that acknowledgement of a; = 2 is monotonic. Therefore, once t observes (Vq :: hylp] # 1),
it is the case that every processor has received the new global state and assigned P’s fields and variables. Thus
after O(d) rounds, t executes U3 and the final phase of the superstabilizer begins. In this final phase, stabilization
to (Vq :: —freeze;) occurs within O(d) rounds; the passage predicate holds because, at each state, the subset of
unfrozen processors are locally legitimate for the new topology. O

12

7 Conclusions

There is increasing recognition that dynamic protocols are necessary for many networks. Studying different ap-
proaches to programming for dynamic environments is therefore a motivated research topic. Although self-stabilizing
techniques for dynamic systems have been previously suggested, explicit research to show how and where these
techniques are useful has be lacking. This paper shows how assumptions about interrupts and dynamic change
can be exploited with qualitative and quantitative advantages while retaining the fault-tolerant properties of self-
stabilization.

In particular, we suggest that when the system is in an illegitimate configuration, reset to a predefined config-
aration will not take place; instead, the system will reach a legitimate configuration that is close to the current
illegitimate configuration (where “close” means small adjustment measure). The benefits of this approach are
twofold: first, such a strategy may keep most of the sites of the system unchanged and in working order (as in the
example of connections within an unchanged portion of a spanning tree); second, in some cases the amount of work
(superstabilizing time) required to reach a close legitimate state can be small (as in our colouring example).

References

[AAGS7] Y. Afek, B. Awerbuch and E. Gafni, “Applying Static Networks Protocols to Dynamic Networks,” Proc. of the
28th IEEE Symp. on Foundation of Computer Science pp. 358-370, 1987.

[AGo90] A. Arora and M. G. Gouda, “Distributed Reset,” Proc. FST 10, Springer LNCS, 472 pp. 316-331, 1990.

[AGH90] B. Awerbuch, O. Goldreich and A. Herzberg, “A Quantitative Approach to Dynamic Networks,” Proc. of the 9th
ACM Symp. on Principles of Distributed Computing, pp. 189-203, 1990.

[AGR92] Y. Afek, E. Gafni and A. Rosen, “The Slide Mechanism with Applications in Dynamic Networks,” Proc. of the
11th ACM Symp. on Principles of Distributed Computing, pp. 3546, 1992.

[AK93] S. Aggarwal and S. Kutten, “Time Optimal Seli-Stabilizing Spanning Tree Algorithm,” Proceedings of the 13th
Conference on Foundations of Software Technology and Theoretical Computer Science, 1993.

[AM92] B. Awerbuch and Y. Mansour, “An Efficient Topology Update Protocol for Dynamic Networks,” Proc. of the 6th
International Workshop on Distributed Algorithms, pp. 185-201, 1992.

[APVS1] B. Awerbuch, B. Patt-Shamir and G. Varghese: “Self-Stabilization by Local Checking and Correction,” Proc. of the
22nd IEEE Symp. on Foundation of Computer Science pp. 268-277, 1991.

[Do93] S. Dolev, “Optimal Time Self Stabilization in Dynamic Systems,” Proc. of the 7th International Workshop
on Distributed Algorithms (Springer-Verlag LNCS 725), pp- 160-173, September 1993.

[DIM93] S. Dolev, A. Israeli and S. Moran, “Self-Stabilization of Dynamic Systems Assuming Only Read/Write Atomicity,”
Distributed Computing, 7 pp. 3-16, 1993.

[DH95) S. Dolev and T. Herman, “SuperStabilizing Protocols for Dynamic Distributed Systems (Preliminary Version)”,
University of Jowa Department of Computer Science Technical Report 95-02, 1995.

[KP93] S. Katz and K. J. Perry, “Self-Stabilizing Extensions for Message-Passing Systems”, Distributed Computing, 7 pp.
17-26, 1993.

[SG89] J. Spinelli and R.G. Gallager, “Event Driven Topology Broadcast Without Sequence Numbers”, IEEE Transactions
on Communication, Vol. 37, No. 5, (1989) pp. 468-474.

13

Appendix
Proof of Theorem 3:

Proof: Proof by induction on an arbitrary computation ®. The induction is based on a directed tree. Let T, be
the maximum subset of processors satisfying: (1) dr =0, (2) the set {t,|p € T, A p # r} represents a directed
tree rooted at r, (3) for p € T, and p # T, register field dp satisfies d, = 1+ d, where q = t, and, (4) each processor
in T, has executed at least one cycle in ®. After one round, d, = 0 holds for the remainder of the computation.
Therefore, after the first round, T, is non-empty, containing at least r. The remainder of the proof concerns rounds
two and higher, and is organized into three claims.

Claim 1: (T, is stable). If p € T, holds at the beginning of the round, then t, and d, do not change
during the round. The claim follows by induction on depth of the tree T,. First we strengthen the
hypothesis to state that any node p € T, satisfies d,. = k, where k is the depth of p in T,. The basis for
the induction is the root r, which satisfies d, = 0; statement S4 assures that d, does not change during
the round. Suppose all nodes of T, up to depth k satisfy the hypothesis, i.e., they are stable and have
d-field equal to the node depth. Consider some v € T at depth k + 1; by (2) and (3),d, = k+1 at
the beginning of the round. Since every d-field has non-negative value and w,. = n for any z # t,, and
assuming the inductive hypothesis for the node named by t,, statement S3 cannot compute any lower
value for x than k + 1 and the values t, and d, do not change during the round.

Claim 2: (T, growth). If there exists a processor that is not contained in T, and ("p: pegT,.:
dp > 2n) holds at the beginning of the round, then T, grows by at least one processor by the end of the
round. The claim follows by examining processors outside of T, that also neighbour T,. Let p be such a
processor, outside T, and neighbour to q € T,. By Claim 1, dq +wpg < 2n. Therefore, during the round,
P cannot choose t, to be some processor s satisfying d, > 2n. Thus T, grows by at least one processor.

Claim 3: (d, growth). Define M; to be the minimum d-register value of any processor outside of T,
in round i; then M;4; > M;. The claim is verified by considering, for round i and p ¢ T,, assignment to
each d, register in that round. During a round, the value obtained for d, is strictly larger than that of
some neighbouring d,; if q € T, then p € T, holds at the end of the round; and if q € T,., then the claim
holds.

A corollary of Claim 3 is that following rounds 2n + 2 and higher, for every p ¢ T,, the field d, satisfies d, > 2n.
Consequently for rounds 2n + 2 and higher, by Claim 2, if T, does not contain all processors, then T, grows by at
least one processor in each successive round. The lemma follows because there are at most . processors. O

Proof of Theorem 4:

Proof: We show that starting from a state 8, & I £, followed by a topology change £, £ € A, resulting in a state o,
that o - £ holds. In the case of £ =crashp, removing a non-tree link, for either processor p or q the weight of the
P—-q link w,, = n at state §; by assumption of § - £, it follows that computation of d and t fields produce identical
results in any round following ¢ since these are necessarily based on unit w-values. In the case of £ = recovp, the
weight of the new p—q link is wp, = n at state o, hence distances are not reduced by addition of the new link and
computation of d and t fields produce identical results in any round following ¢. Therefore o |- L. O

14

Proof of Theorem 5:
Proof: The the proof is organized as three claims.
Claim 1: Following round i, i > 1, the e, field of every processor satisfies

(Vp,a,i: I<i: dist(p,q) <j @ (3(q,%q, dist(p,q)) € €p))

The claim follows by induction on i. The basis of the induction is the first round, which trivially
establishes (p,xp,0) € e, for every processor. The induction step follows because field ep is assigned
anew in each round and based on tuples that, by the induction hypothesis, have the required property.

Claim 2: Following round i, i > 1, the e, field of every processor satisfies
(¥p,q,j: j<i: (Aayk) e k <j = (dist(p,q) =k A y=%)))

This claim follows by same inductive argument presented for Claim 1.

Claim 3: Following round d+1, (Vp:: (V{,,kyeep: k<d N

The claim is shown by contradiction. Suppose e, contains a tuple (,,j) where j > d. Observe that if
j > d + 1 then, by the construction of the initseq function, at the end of round d + 1 the field e, also
contains some tuple {q,,k) where k = d + 1. Thus to show the claim, it suffices to show a contradiction
for k = d + 1. Since p assigned the tuple {q,,d+1) to e, during round d + 1, it must be that p found at
some neighbour s the tuple (& ,,d) and found no tuple with q as first component at a smaller distance.
However, the tuple located at s having distance d represents the shortest distance to g by Claim 2. And
since d bounds the maximum possible shortest path, by Claim 1 all shortest paths between p and q are
visible to p at the end of round d. We conclude that dist(p,q) = d +1, which contradicts the definition
of diameter d.

Claims 1-3 together imply that, following d+ 1 rounds, each processor correctly has a tuple for every other processor
at distance d and that every tuple in an e-field correctly refers to a pro'cessor O

15

Paper Number 4

Space-Effecient Distributed Self-Stabilizing Depth-First Token Circulation

Colette Johnen and Joffroy Beauquier

SPACE-EFFICIENT DISTRIBUTED
SELF-STABILIZING DEPTH-FIRST TOKEN
CIRCULATION

Colette Johnen, Joffroy Beauquier
L.R.I./C.N.R.S.
Université de Paris-Sud
Bat. 490, Campus d’Orsay
F-91405 Orsay Cedex, France.
tel : (+33) 1 69 41 66 29
fax : (4+33) 1 69 41 65 86
colette@lri.fr, jb@lri.fr

Abstract

The notion of self-stabilization was introduced by Dijkstra. He defined a system as self-
stabilizing when "regardless of its initial state, it is guaranteed to arrive at a legitimate state in
a finite number of steps”. Such a property is very desirable for any distributed system, because
after any unexpected perturbation modifying the memory state, the system eventually recovers
and returns to a legitimate state, without any outside intervention.

In this paper, we are interested in a distributed self-stabilizing depth-first token circulation
protocol on an uniform rooted network (no identifiers, but a distinguished root).

As already noted, a search algorithm together with a deterministic enumeration of the
node’s neighbors yields an algorithm determining a spanning tree.

Our contribution is improving the best up to now known space complexity for this problem,
from O(log(N)) to O(log(D)) where N is number of nodes and D is the network’s degree.
Moreover, we give a full proof of the algorithm correctness assuming the existence of a dis-
tributed demon.

Keywords : fault-tolerant distributed algorithms, self-stabilization, spanning tree, mutual-
exclusion, distributed demon.

1 Introduction

The notion of self-stabilization was introduced by Dijkstra [5]. He defined a system as self-stabilizing
when “regardless of its initial state, it is guaranteed to arrive at a legitimate state in a finite
number of steps”. Such a property is very desirable for any distributed system, because after any
unexpected perturbation modifying the memory state, the system eventually recovers and returns
to a legitimate state, without any outside intervention. Self-stabilizing has been since studied by
various researchers and Dijkstra’s original notion, which had a very narrow scope of application, has
proved to encompass a formal and unified approach to fault-tolerance, under a model of transient
failures for distributed systems.

In this paper, we are interested in the construction of a distributed Self-stabilizing for depth-first
token circulation in an uniform rooted network (no identifier, but a distinguished root). As a token
circulation algorithm, our algorithm provides a fair mutual-exclusion protocol (the node having the
token is the one authorized to enter into critical section).

Several authors [5], [6], and [3] have presented token circulation algorithm on ring networks ; Brown,
Gouda, and Wu [2] have presented one on linear chains; Kruijer [11] have presented one on tree
networks. Huang and Chen have presented an algorithm [10] on general networks with a distributed
demon.

As noted in [10], a token circulation algorithm together with a deterministic enumeration of the
node’s neighbors yields an algorithm determining a spanning tree. The task of spanning tree
construction is a basic primitive in communication networks. Many crucial network tasks, such as
network reset (and thus any input/output task), leader election, broadcast, topology update, and
distributed database maintenance, can be efficiently carried out in the presence of a tree defined on
the network nodes spanning the entire network. Improving the efficiency of the underlying spanning
tree algorithm usually also correspondingly improves the efficiency of the particular task at hand.

Note that other constructions of spanning trees in a self-stabilizing way are known. Some authors
(as in [1] and [4]) have presented algorithms with a central demon. Huang and Chen [9] construct
a minimal spanning tree with a distributed demon. Sur and Srimani [12] have presented a similar
algorithm but the correctness proof is substantially simpler, based on graph theoretical reasoning.
Dolev, Israeli, and Moran [7] have reported a minimal spanning tree construction with read-write
atomicity (then the system is fully asynchronous). Finally, Tsai, and Huang [13] have presented an
algorithm that constructs a minimal spanning tree with a fully distributed demon.

There are two principal measures of efficiency for self-stabilizing algorithms : stabilization time,
which is the maximum time taken for the algorithm to converge to a legitimate state, starting from
an arbitrary state and the space required at each node (e.g. size of local memory needed). We are
interested here in reducing the value of the second parameter. The goal of producing systems with
a small number of states per processor/node is of particular interest because such processors may
have direct implementations in hardware.

The existing solutions for token circulation or spanning tree construction on general network topol-
ogy have a space complexity in O(log(N)), N being the number of nodes. Our contribution is a new
algorithm that achieves the goal in O(log(D)) states per node, D being the upper bound of node’s
degree.

On the other hand, Burns and Pachl [3] showed that does not exist uniform self-stabilizing token
circulation on a.composite ring. The best that can be proposed is a semi-uniform algorithm, as our
algorithm.

Moreover, our protocol does not need to know the number of nodes in the network. Therefore,
it works for any connected network and even for dynamic networks, in which the topology of the
network may change during the execution (nevertheless, the upper bound of the node’s degree
should not increase to keep constant the required memory space at each node).

We give the extensive proof of our algorithm within the distributed model where several nodes can
simultaneously perform a move.

The remainder of the paper has been organized as follows; an informal description of the proposed
protocol is provided in section 2. The formal model is described in section 3; protocol formal
description is given in section 4 ; its correctness is proven in section 3.

9 Informal description of the protocol

As a model of computation, we choose the following model, that is an extension of Dijkstra’s original
model for rings to arbitrary graphs. Consider a connected graph G(V, E), in which V is a set of
nodes and E is a set of edges. Such a graph is used to model a distributed system with N nodes, N
= |V|, in which each node represents a processor. In the graph, directly connected nodes are called
each other’s neighbors. Our goal is to design a self-stabilizing algorithm that performs a depth-first
search on the graph.

The proposed self-stabilizing algorithm is encoded as a set of rules. Fach processor has several
rules. Each rule has two parts : the privilege (condition) part, and the move part. The privilege
part is defined as a boolean function of the processor’s own state and of the states of its neighbors.
When the privilege of a rule on a processor is true, we say that the processor has the privilege. A
processor having the privilege may then make the corresponding move which changes the processor
state into a new one that is a function of its old state and of the states of its neighbors.

We assume the existence of a distributed demon and we assume that the computation proceeds in
steps. The distributed demon [5] chooses several privileged nodes and one enabled rule on each
chosen node at a time. Hence, in each computation step, several processors make a move. The
privileges for the next move depend on the states resulting from the previous moves. The rules are
atomic : the processors cannot evaluate their privilege at a time and then make the move later with
in between other moves.

To ensure the correctness of the protocol, the demon is regarded as an adversary and the protocol
is required to be correct in all possible executions. Nevertheless, the demon is fair, a node does not
hold forever a privilege on a rule without being chosen by the demon.

The proposed algorithm has two parts. One circulates the token among the nodes in an indeter-
ministic depth-first order. This part is identical to the one in the Huang-Chen algorithm [10]. The
other part handles abnormal situation due to unpredictable initial states or transient failures.

We name 7 the distinguished node that initiates the depth-first circulation rounds, and chooses the

3

round color (0 or 1). Each node has a color among three values : 0, 1, and E (for error). The node
having the token, takes the round color and searches among its neighbors one which has not been
visited during this round (an isolated node having the color different of the round color and of E
color). If it finds a suitable node then it passes to this node the token ; else it backtracks the token
to its parent. When the token has backtrack to r; the round is over. r initiates a new round with
the other color.

There are two error-handling strategies : one for destroying the illegal branches that are not cycles
and the other for the cycles. The treatment of illegal branches (branches which are not cycles and
which are not rooted to the legal root) is similar to the one used by Huang and Chen. The illegal
roots detect their abnormal situation and color themselves to E. The E color is propagated to their
leaf; then, the E-colored leaves are dropped ; and the detached E-colored nodes are recovered by
changing color. The repetition of dropping and recovering processes will correct all nodes inside
illegal branches (there is a finite number of creations of new illegal branches). The cycle destruction

root node

/O root node
has the token
The token detected the cycle :
Network before detection of the cycle a node inside the cycle has now two parents,

o o Lt.d;gmc

The node with 2 parents took The E-color has been propagated The cycle is broken : the parent/descendant
itself the E-color. to all nodes inside the cycle. of the node having 2 parents dropped its son.

Figure 1: Destruction of a cycle

strategy is completely different from the one used in [10]. Our solution does not use a variable
level. The key point is the detection of cycles by outside nodes that will provoke the correction.
The root initializes successive depth-first searches alternatively colored 0 and 1. Note that, due to
a bad initialization, such a depth-first search can only be partial.

During a 0-colored round, all nodes inside the branch are O-colored. If during a 0-colored round,
the leaf has an 1-colored neighbor which is inside a cycle, there must be an error somewhere. Then
the leaf chooses the faulty node as son (figure 1). The faulty node detects that it has two parents,
and then colors itself E. The E color propagates to the descendant-parent of the faulty node. At
this point, this node can drop its son (the faulty node) and break the cycle.

Obviously, the same holds if a node inside a cycle during an 1-colored round is 0-colored.

The nodes inside a cycle can change their color only to become E-colored (by a R8 move). This
move can be performed at most once on a node inside a, cycle. Thus, such nodes stop changing
color. We can also prove that the cycles are eventually destroyed.

4

3 Formal model

Let S be a system defined by a set of states and a set of transitions where each transition is an
ordered pair of states.

A computation is a sequence of system states (81, 825 - 3 Sny -) Where each couple (s, Si41) is a
system transition.

A system state is defined by the local variable values of each node. If the simultaneous moves of *
several rules modify the system state from s; to s, then (s1, s2) is a system transition in the case
where (i) at most one move by a node is performed; (ii) and in s; the rule privileges are satisfied
on the nodes which perform the corresponding rule moves.

A region of a system is a subset of system states. A region REQG is closed if for every transition (s1,
s2) where s; In REG then s, is in REG.

A computation C leads to a region REG, if C has a state in REG.

A region REG is an attractor of a computation (s1, Sz, ---) if there is an integer n such that for all
i > n, s; belongs to REG.

A region REG is an attractor if it is closed and all computations lead to REG.

A predicate P over system states defines the region REG(P) as the set of states where P is satisfied.
Shorten, we said that P is closed (resp. attractor) if and only if REG(P) is closed (resp. an
attractor).

A predicate P, over node states is a trap if for any node i, the predicate “P, (%) = true” over system
states is closed. -

A legitimate states set verifies several properties [5] : (i) it is closed, (ii) in each legitimate state,
one and only one node holds one privilege, (i) each legitimate state is reachable from any other
legitimate state, and (iv) each node has a legitimate state where it holds a privilege.

We call a system self-stabilizing if and only if regardless of the initial state and regardless of the
computation, the system is guaranteed to reach the legitimate states set after a finite number of
moves.

4 Protocol formal specification

Notation X.iis read X of i; notation X.Y.i: X of Y of c
Each node i maintains the following variables :

e D.i: a pointer pointing to one of its neighbors (called ¢’s son) or pointing to NULL.
e C.i: the color of node i taking value in the set {0, 1, E}.

The required space at each node can be evaluated. Under the hypothesis that the graph under
consideration has a fixed upper bounded degree D, independent from the number N of nodes, the
size of son variable is log(D); the color varable has also a fixed size (2 bits). Then, the space
complexity of the algorithm at each node is Q(log(D)).

o

Other used notations are :

o P.i: the set of i’s parents.
e NB.i: the set of i’s neighbors with r excluded.
e NP.i: the number of i’s parents.

4.1 Token circulation rules

We define some predicates used in the definition of the token circulation rules :

Token.i holds if i is a live leaf and #’s color is not the same as #’s parent color. A live leaf is a leaf
whose color is not E.

BToken.i holds if i’s son is a live leaf whose color is the same as #'s color.

Anomalous(i,k) holds if k has a parent and does not have the expected color for an inside node with
respect to i (the expected color is either C.i if BToken.i or C.i+1 mod? if Token.1).

Detached.i holds if i is a node without son and without parent.

PotentialFirstSon(i,k) holds if Token.i holds, there is no anomalous node with respect to ¢, and k is
a potential first ¢’s son (k is a detached node with the right color : #’s color).

DeadEnd.: holds if Token.: holds, there is no anomalous node with respect to i, and it does not
exist a potential first ¢’s son.

PotentialNewSon(i,k) holds if BToken.: holds, there is no anomalous node with respect to 7, and k
is a potential new #'s son. (k is a live detached node with the right color : different from #’s color).
Backtrack.i holds if BToken.: holds, there is no anomalous node with respect to ¢, and it does not
exist a potential new s son.

We formally define the predicates :
o Token.i=[((i=1) A (C.i#E) A (D.i=NULL)) V ((i% 7) A (D.i= NULL) A
(NP.i=1) A (C.i # E) A (C.P.i # E) A (C.P.i # C.7))]
o BToken.i = [(D.i # NULL) A (D.D.i = NULL) A (C.D.i = C.i) A (C.i # E)]
o Anomalous(i,k) = [3 k € NB.i | (NP.k > 1) A :
((Token.i A (C.k # C.i+1 mod2)) v (BToken.i A (C.k # C.iy))]
o Detached.i = [(D.i = NULL) A (NP.i = 0)]

o PotentialFirstSon(i,k) = [Token.i A (V j € NB.7| —aAnoma.lous(i,k)) A
(3 k € NB.i| Detached.k A (C.k = C.i))]

e DeadEnd.i = [Token.i A (VjeNB.i| —Anomalous(7,k) A —PotentialFirstSon(i,k))]

o PotentialNewSon(i,k) = [BToken.i A (VjeNB.| —Anomalous(4,k)) A
(3 k € NB.i| Detached.k A (C.k = C.i+1 mod2))]

e Backtrack.i = [BToken.i A (Vj € NB.i| —Anomalous(i,k) A ~PotentialNewSon(i,k))]
On a node i, the token circulation rules are :
RO : PotentialFirstSon(i,k) A (i =) — C.r = C.r+1 mod2; D.r = k
R1 : PotentialFirstSon(z,k) A (i # r) — C.i= C.P.i; D.i=k
R2: DeadEnd.i A (i # r) —» C.i = C.P.i; D.i = NULL

R3 : PotentialNewSon(i,k) = D.i=k
R4 : Backtrack.i — D.i = NULL

The rule RO initiates a regular circulation round : the node r changes the round color and chooses
a son that gains the token. By a R1 move, the token passes from the previous leaf to its new son
(that is now the leaf). So, the branch lengthens. If the leaf cannot find 2 suitable son (a neighbor
that had not been visited during the current round) the leaf drops its token, by a R2 move. A
R3 move, substitutes a new leaf (a node that had not been visited during the current round) for
the current one (that does not have the token); this new leaf gains the token. If the current leaf
does have the token and a new suitable leaf cannot be found, the branch is shrunk by a R4 move.
When the branch is completely destroyed (e.g. the round is over), the node r has the token, and
can perform a R0 move.

Evaluation of any privilege necessitates two communications round : each node has to get the two
local variable values from its neighbors. Then, each node can compute its number of parents and
transmit this value to all its neighbors.

root node root node root node root node

RO privilege @. 1 R3 privilege 0
db d’ """ b R2 privilege C]} """ b d‘ R1 privilege

Network before a O-round Network state after RO move Network state after R2 move Network state after R3 move
root node . root node root node =i root node
;} 0 0. 0 00... 0 0',..,__ 0
'-._O '.__O & & ..__O Cg- 8)"'_. ._‘-o
R2 pr]vilege R4 pl‘ivilege :
Network state after R1 move Network state after R2 move Network state after R4 move Network state after a O-round

and before a 1-round

Figure 2: Token circulation

4.2 Error handling rules

A self-stabilizing system has an unpredictable initial state. In such a state, the D pointers point to
any neighbors or NULL. Thus, illegal branches or cycles can exist in theinitial state. The following
rules delete illegal branches and transform cycles into branches. Thus, the system eventually reaches
a legitimate state.

4.2.1 Tllegal branch destruction

We define some predicates used in the definition of the illegal branch destruction rules :

o FBToken.i = [(D.i # NULL) A (D.D.i = NULL) A (C.D.i = E)]
o TllegalRoot.i = [(i #) A (D.i # NULL) A (NP.i = 0)]

T

FBToken.i holds if i's son is a dead leaf (an E-colored leaf).
IllegalRoot.i holds if i is a branch root without being the node 7.

On a node i, the rules that destruct the illegal branches are :
R7 : FBToken.: —» C.i = E; D.i = NULL
R8:3k€NB.i | D.k=iACk=EAC.i#E—=C.i=E
R9 : Detached.i A C.i=E — C.i=0
R10 : IllegalRoot.i A C.i# E — C.i=E
The illegal branch destructions are processed as follows : R10 colors illegal roots E. R8 propagates

the E color toward the leaf (the E color is propagated only from parent to son). R7 drops the
E-colored leaf (the new leaf will have also the color E). R recovers the detached erroneous nodes.

R10 privilege R7 privilege R9 privilege
1 E E EO 00
oroot node root node root node root node root node
0 0 0 0 0
1 1 E EO 00
R8 privilege R9 privilege
Illegal live branch Illegal dead branch Without illegal branch

Figure 3: Destruction of an illegal branch

4.2.2 Cycle destruction

R6 : Anomalous(i,k) — D.i =k
R11: NP.i22ACi#E<=Ci=E
R12: NP.D.i>2AC.i=EA CD.i=E — D.i= NULL

The cycle destructions are done as follows : R6 detects an anomalous node, and becomes its new
parent (an anomalous node has a parent and does not have the expected color for a node having a
parent). Now, R11 can color E the anomalous node (R11 colors E a node having several parents).
The E color is propagated to the descendants of the anomalous node by R8 moves. Either the
anomalous node is inside a branch (see above), or the anomalous node is inside a cycle. Then a
R12 move on the parent/descendant of the anomalous node breaks the cycle (R12 disconnects an
E-colored node with its son if its son has several parents and is also E-colored). After that, we have
a branch whose leaf is E-colored.

4.2.3 Miscellaneous error handling

R5 : DeadEnd.i A (i = r) — C.r = C.r+1 mod2; D.r = NULL
R13: D.i=r— D.i = NULL

The rule RS initiates a quick round (the only move is the s color changing). R13 breaks the links
parent-son with the node r (7 should not have parent).

1 o 1 ded rootnodeo RS privilege o0t node RO privilege
root node root node
R13 privilege 7 1 1 O/O\ 1 1
1 1 ! O Ly O

- R4 privilege
Before R13 move After R13 move Before R5 move After RS move

Figure 4: Miscellaneous error handling rules
5 Correctness of the protocol

We name LS the set of states where (i) only one node holds a privilege (ii) the satisfied privilege is
RO, R1, R2, R3 or R4 (iii) there is no cycle and no illegal branch.

We will prove that LS is a valid legitimate states set, and that, in LS, the token circulates in
depth-first order.

To prove the correctness of our algorithm, we use the convergent stair [8] method. We show that
there is a sequence of predicates on the system states such that all computations lead to the regions
defined by these predicates step by step (w.r.t. each region is an attractor, and each region is a
subset of the previous one).

First, we prove that all computations are infinite. Then, we establish that there is a finite number of
creations of illegal and live branches (e.g. branch whose root is 7 and whose leaf is not E-colored), in
any computation. The fairness scheduling of the rules R10 and R8 provokes the dead of the illegal
branches (e.g. their leaves get the E color). At this point, we show that no more node will join an
illegal branch; and the illegal branches will eventually destroy themselves (by fairness scheduling
of the rule R7). We prove that the legal branch will unavoidably become and stay sound (see the
following predicate definition). We demonstrate that after the legal branch is sound, no more cycle
is created ; and that the cycles are eventually destroyed.

We conclude in showing that in LS the protocol provides a token circulation in depth-first order.

5.1 Predicate definitions

We define some predicates used in the correctness proofs :

Cycle.i holds if 7 belongs to a cycle : one of s descendant is a i's parent.

StrictCycle.i holds if i belongs to a cycle and all nodes in this cycle have only one parent.
IllegalNode.i holds if i belongs to a branch whose root is not r.

IllegalLiveRoot.i holds if 7 1s an illegal root whose branch ends in a dead leaf.

DeadLeaf.i holds if 7 is an erroneous leaf.

Unsound.i holds if i is an inside node (no leaf) of the legal branch that does have the same color
as its parent and the legal branch ends in a live leaf. If a such node i exists, we said that the legal
branch is unsound. .

e Cycle.i = [there is a series of nodes po, ... , p, such that py = i = P A
: (Vjsuchthat 0 <j<n | D.p; = pjs1)]
o StrictCycle.i'= [there is a series of nodes py, ... , p, such that py = i = p, A
(Vjsuch that 0 <j <n | D.p; = pjt1 A NP.p; = 1)]
o lllegalNode.i = [there is a series of nodes po, ... , p, such that IllegalRoot.po A p, = i A
(Vjsuch that 0 < j < n | D.p; = pjs1))]
e IllegalLiveRoot.i = [IllegalRoot.i A there is a series of nodes py, ..., p, such that
Po=1AD.p, = NULL A C.p, # EA (V] suchthat 0 <j < n |D.p; = pj1)]
o DeadLeat.i = [(D.i = NULL) A (C.i=E) A ((i = 1) V (N.P.i > 1))]
e Unsound.i = [there is a series of nodes po, ... , p, such that po = 7 A D.p, = NULL A Cpn #E
A(Vjsuchthat 0<j<n|D.pj=pjs1)A(Fj|0<j<nA i=p;) A C.i# C.P.{

5.1.1 Algorithm Liveness

Theorem 1 In any system state, at least one node holds a privilege.

Proof : There are two kinds of configurations : either there is a leaf, or no. In these two configu-
ration kinds, a move is possible.)

5.2 Destruction of iHegal branches
5.2.1 Destruction of illegal and live branches

We present how all illegal and live branches are eventually destroyed, whatever computation is
performed.

Lemma 1 REGI = { NP.r = 0} is an attractor.

Let us define CorrectLegalBranch as a boolean function of the system state. This function is true

if there is a series of nodes p, ..., p, such that ‘

po=rA (Visuch that 0 <i<n|D.p; = piys) A (DeadLea,f.pn Vidi]0<i<nAp; =p,) WV
((NP.p, > 1V D.p, = NULL) A (Vi such that 0 < i < n | C.p; # E)))

CorrectLegalBranch is true when the branch whose root is r ends in a dead leaf or in a cycle, or
when all nodes of this branch between the root and a suitable node are not E-colored (a node is
suitable if it is a leaf or if it has several parents).

Let us define the number X as following (if CorrectLegalBranch is false then IncorrectLegalBranch =1
otherwise IncorrectLegalBranch = 0) :
X = number of illegal and live roots + IncorrectLegalBranch

First, we will prove that X value decreases at each creation of an illegal live root; then we will
establish that X value never increases. We will conclude that there is a finite number of illegal live
root creations, in any computation. At this point, we will be able to prove that each computation
Is attracted by system states where there is no live and illegal branch.

10

Lemma 2 In REGI1, at each creation of an illegal and live root, X decreases.

Proof : There is creation of an illegal root, only when all parents of one node perform a R12 move.
This node becomes a new illegal root by losing all its parents. This node was inside a cycle, inside
a dead branch, inside several illegal live branches, or inside only one illegal and live branch. In all
cases, we prove that X decreases. a

Lemma 3 In REG1, X never increases.

Proof : There is only two cases where X increases : Either the number of illegal and live roots
increases; thus a new illegal and live root has been created. The lemma 2 establishes that X does
not increase in this case. Or, the legal branch reaches an incorrect state from a correct one. But in
this case, the number of illegal live roots decreases. Thus X does not increase. O

Theorem 2 REG2 = REG1N {V i —IllegalLiveRoot.i } is an attractor-

Proof : X decreases at each creation of illegal and live root (lemma 2) and X never increases. At
some point, there will be no more creation of illegal and live roots. Then, by fairness scheduling of
the R8 and R10 moves, REG2 will be reached. O

In REG2 there is at most one live leaf (the leaf of the legal branch). There are some illegal branches
but all of them are dead.

5.2.2 Destruction of illegal and dead branches

We present how all illegal and dead branches are eventually destroyed, whatever computation be
performed.

Lemma 4 REG3 = REG2N { X = 0} is an attractor.

Proof : REG3is closed (lemma 3). By fairness scheduling of the R8 moves, the legal branch will
end in a dead leaf (X = 0). O

Lemma 5 In REGS, the predicate —IllegalNode is a trap.

Proof : The illegal branches cannot be extended because they are dead. The only way that nodes
become illegal is the creation of a new illegal branch whose root was not already an illegal node.
This can only append when the legal branch is an incorrect state. m

Theorem 3 REG4 = REG3N {V i —IllegalNode.i } is an attractor. -

Proof : By fairness scheduling of the R7 moves, the illegal branches will destroy themselves. U

5.3 Destruction of cycles

We show that in all computations, the cycles are eventually destroyed.

11

5.3.1 Soundness of the legal branch

We show that whatever computation be performed, it leads to system states where the legal branch
is and stays sound (when the legal branch ends in a live leaf, all inside nodes of the legal branch
have the same color)..

Lemma 6 In REG{, The predicate = Unsound is a trap.
Proof : Any move does not change a sound node into an unsound one. !

Remark : REG5 = REG4/ N { Vi: ~Unsound.i } is closed.

In order to prove that any execution leads to REG5; we will prove that all computations have to
lead to REGS.

Let C'be a computation which does not reach REGS5. Thus, there is a no-empty set of nodes which
are unsound all along C. Let is name N this set. These nodes are and stay in the legal branch
along C. We call REG 4 the subregion of REG/ where all nodes of Mg are unsound and others are
not.

In REG 4, R6 privilege holds only on the live leaf of the legal branch. As described in the proof of
the lemma 6, after a R6 move on the legal leaf, the legal branch is sound. Therefore, C does not
contain a R6 move.

Lemma 7 REGja = REG4 N { VY i: NP.i< 1} isan attractor of C.

Proof : In REG4, there is onIy one leaf. At a time, only one node can pick up a new son. Thus,
any node cannot gain several parents, in one step. Only after a R6 move, a node having a parent
get a second one. A R6 move is never performed by C; thus REG/ is closed. By fairness scheduling
of the rules R11, R8, or R12, REG fa will be reached by C. a

Lemma 8 REGIb = REG4a N {V i: Cycle.iV C.i # E } is an attractor of C.

Proof : By fairness scheduling of R7, R8 and R9 rules, REG /b will be reached in C. Any rule
moves that can be performed in REG b does not color E a node outside cycles. O

Remark : in REG4b, C does not contain R6, R7, R9, R10, R11, R12, and R13 moves. in R8g4b
the move R8 is performed a finite number of times (at most one time on each node inside a cycle).
After a RO, or R5 move the legal branch is sound. C contains only an 1nﬁn1ty of R1, R2, R3, or R4
moves in ’REQ 4b.

Let I; be an integer function of system states defined as :
I, = x number of detached nodes of color different from C.i
x number of nodes in legal branch after i that have a son
x number of leaf whose color differs from C.:
x number of leaf whose color is C.:

o W W

+
+
|

Lemma 9 Let i be the farthest node of Ng on the legal branch. In REG b, the C computation
contains a R4 move on 1.

12

Proof : All nodes inside the legal branch after i have the same color as i, except the leaf. Until
a R4 move on i, I; is strictly decreased by R1, R2, R3, and other R4 moves. Assume that C does
not contain a R4 move on i, the C computation would be finite, in contradiction with the theorem
1. O
After this R4 move, the farthest node of NG is the leaf and is sound. Thus, there is a contradiction
with the hypothesis the nodes N are unsound all along C. We conclude that all computations
reach REGS5. The following theorem is a consequence of the lemmas 6 and 9.

Theorem 4 REGS5 is an attractor.

5.3.2 Destruction of strict cycles

We show that in all computations, the strict circles are eventually destroyed.
Lemma 10 In REGS, the predicates —~Cycle and - StrictCycle are traps.
Remark : REG6 = REG5 N {Vi: —StrictCycle.i} is closed (lemma 10).

In order to prove that any execution lead to RE G6, we prove that it does not exist a computation
not leading to REGS.

Let Cbe a computation which does not lead to REG6. Thus there is a no-empty set of nodes which
are and stay inside a strict cycle along C let us name N this set. We call REGS5 the subregion of
REGS5 where all nodes of N are inside a cycle and others nodes are not inside a cycle. In REGS,
after a R6(i,k) move, k which was previously inside a strict cycle, is no more within a strict cycle.
Therefore, C cannot contain R6 move in REGS.

The proof of the following lemma is similar to the proof of the lemmas 7 and 8.

Lemma 11 REGSh = REGS5N{Vi: NPi<1}Nn{Vi: CycleiV Ci # E } is an attractor
of C.

Remark : C contains only an infinity of R0, R1, R2, R3, R4 moves in REG 5b.
Lemma 12 In REG5b, the C computation contains an infinity of RO moves.

Proof : Between two R4 moves on , there is a R0 move. Assume that C contains a finite number
of RO moves on . At some point, C does not contain R0 and R4 move on r. After that I is strictly
decreased by all possible moves. Thus the C computation would be finite, in contradiction with the
theorem 1. 7 o
Let D; be the the minimal distance between and 7 defined as :
D; = Min { n € N | 3 a node series po, .. , P» such that
po=rAp,=iA(Vjsuchthat 0 <j<n|pj1 € NB.p;) }

Let D¢ be the minimal distance between r and a node of V. Formally, we define D¢ as :
D¢ = Min { n € N | 3 a node series po, ... , P such that po = 7 A StrictCycle.p, A
(V j such that 0 < j < n | =StrictCycle.p; A pj+1 € NB.p;) }

Lemma 13 If D¢ > 1, then in REGSH, the C computation contains an infinity of R1 or R2 moves
performed on each r’s neighbor.

13

Proof : After a RO move, r cannot perform a new R0 move until all its neighbors have the same
color as its own. (i) There are an infinity of RO moves; (ii) the RO moves are the only moves to
change the color of r; (iii) and the only moves which change the r’s neighbors color are R1 and R2
moves. o

Similarly, we prove the following lemma.

Lemma 14 Let i be a node such that De > D; and such that the C computation contains an infinity
of R1 or R2 moves performed by i. C contains also an infinity of R1 or R2 moves performed by
each i’s neighbor.

Lemma 15 There does not exist a computation which does not lead to REGS.

Proof : Let i be a node such that Do = D;+1 and such that ¢ has a neighbor £ verifying Strict-
Cycle.k. In REG5b, system states where Token.i is satisfied, are infinity often reached along C. At
some point, k cannot change its color (the moves that are performed infinitely often along C cannot
be performed on a node inside a cycle). After that, 7 will eventually performed a R6 move. a

The following theorem is a consequence of the lemmas 10 and 15.

Theorem 5 REG6 is an attractor.

5.3.3 Destruction of un-strict cycles

The strict cycle have been deleted ; Thus, the is at most one (un-strict) cycle. Now, we establish
that the last circle is eventually destroyed.

Theorem 6 REG7 = REG6 N {V i : ~Cycle.i} is an attractor.

Proof : The lemma 10 establishes that the region REG7 is closed. Let i be a node belonging to
a cycle. i does not belong to a strict cycle. Thus, a node of its cycle holds the R11, R8 or R12
privilege. At each system state of REGS, only one node holds a privilege. At each step, the only
enable move (R11, R8 or R12) is performed until the cycle is destroyed by the R12 move. O

5.4 Legitimate state set

The proof of the following theorem is similar to the proof of lemma 8. _
Theorem 7 LS = REGTN {V i: C.i # E} is an attractor.

In LS, (i) only one node has a privilege; (ii) only the R0, R1, R2, R3, or R4 moves are performed ;
and (iii) any node does not verify Cycle or IllegalNode predicates.

From any state of LS, we can reach the system state s, where all nodes are detached and have the
color 0. It is quite obvious that from sq, any state of LS can be reached.

The lemmas 12, 13, and 14 establish that each node i has several legitimate states where Token.i is
true. In these states, ¢ holds the R0, R1, or R2 privilege.

14

The privilege of R2, the rule that stops the branch growing is held if and only if the branch cannot
lengthen. The privilege of R4, the rule that shrinks the branch, is held if and only if the branch
cannot lengthen and cannot change its way (e.g. to change leaf). Thus, as long as it is possible,
the current branch lengthens and the token goes further off . In LS, the token circulation is done
in a depth-first order.

We have proved that (i) LS is a valid legitimate state set; (ii) LS is an attractor; and (iii) in LS,
our protocol provides a token circulating in the network in depth-first order.

References

[1] Yehuda Afek, Shay Kutten, and Moti Yung. Memory-efficient self-stabilization on general
networks. In Proc. 4th Int. Workshop on Distributed Algorithms, volume 486, pages 15-28.
Springer-Verlag, 1990.

[2] Geoffrey M. Brown, Mohamed G. Gouda, and Chuan lin Wu. Token systems that self-stabilize.
IEEE Transactions on Computers, 38(6):845-852, 1989.

[3] James E. Burns and Jan Pachl. Uniform self-stabilizing rings. ACM Trans. on Programming
Languages and Systems, 11(2):330-344, 1989.

[4] Nian-Shing Chen, Hwey-Pyng Yu, and Shing-Tsaan Huang. A self-stabilizing algorithm for
constructing spanning trees. Information Processing Letters, 39:147=151, 1991.

[5] Edsger W. Dijkstra. Self-stabilizing systems in spite of distributed control. Com-munications
of the A.C.M., 17(11):643-644, 1974, :

[6] Edsger W. Dijkstra. A belated proof of self-stabilization. Distributed Computing, 1:5-6, 1986.

[7] Shlomi Dolev, Amos Israeli, and Shlomo Moran. Self-stabilization of dynamic systems assuring
only read/write atomicy. Distributed Computing, 7:3-16, 1993.

[8] Mohamed G. Gouda and Nicholas J. Multari. Stabilizing communication protocols. IEEE
Transactions on Computers, 40(4):448-458, 1991.

[9] Shing-Tsan Huang and Nian-Shing Chen. A self-stabilizing algorithm for constructing breadth-
first trees. Information Processing Letters, 41:109-117, 1992.

[10] Shing-Tsan Huang and Nian-Shing Chen. Self-stabilizing depth-first token circulation on net-
works. Distributed Computing, 7:61-66, 1993.

[11] H.S.M. Kruijer. Self-stabilizing (in spite of distributed control) in tree-structured systems.
Information Processing Letters, 29:91-95, 1979.

[12] Sumit Sur and Pradip K. Srimani. A self-stabilizing distributed algorithm to construct bfs
spanning trees on a symetric graph. Parallel Processing Letters, 2(2/3):171-179, 1992.

[13] Ming-Shin Tsai and Shing-Tsaan Huang. A self-stabilizing algorithm for the shortest paths
problem with a fully distributed demon. Parallel Processing Letters, 4(1):65-72, 1994.

15

Paper Number 5

A Self-Stabilizing Distributed Heap Maintenance Protocol

Brian Bourgon and Ajoy Kumar Datta

A Self-Stabilizing Distributed Heap Maintenance Protocol *

Brian BOURGON and Ajoy Kumar DATTA
Department of Computer Science,
University of Nevada, Las Vegas

Abstract

This paper presents an O(nh) self-stabilizing distributed heap maintenance protocol in a tree network,
where h is the height and n is the number of nodes of the tree. The underlying paradigm of counter
flushing due to Varghese is used to stabilize the synchronization between the nodes in the system. The
heap maintenance problem is the problem of maintaining each node in the tree to have a larger value
than any of its children. This heap is maintained on a general tree structure rather than the traditional
balanced binary tree. The protocol presented handles all transient failures such as nodes entering and
leaving the system, random corruption of variables, and message loss or corruption on the links. There
is currently no known distributed protocol for this problem in the literature. ‘

Keywords: broadcast-convergecast, counter flushing, distributed algorithms, heap maintenance,
self-stabilization

1 Introduction -

In tecent work in the well-known area of self-stabilization [9, 14], there have been a number of paradigms
designed for achieving self-stabilization [, 2,3, 4,5, 6, 12, 15, 16]. Two paradigms in particular are of
particular interest in solving those problems which require information to travel to a central leader and
then be disbursed to all nodes in the network [3, 16]. The former due to Arora and Gouda is used to reset
some distributed application protocol in the shared memory model, while the latter due to Varghese is
used to disseminate the network information in a message passing system model. The problem of heap
maintenance is such a problem in which information needs to be propagated throughout the network in
a broadcast-convergecast manner. We have chosen to model the system for this protocol in the message
passing environment, and are therefore using the counter flushing paradigm. The basic idea behind counter
flushing is to synchronize the passing of information through the network by attaching a counter value in
the range 0..Maxz to every message. Nodes in the network will only accept messages from parent nodes with
counter values that differ from their own, and will only accept messages from children with the same counter
values. New counter values can only be produced at the special root node. To simplify presentation, the
I/0 Automaton model of Lynch and Tuttle is used to model the system [13, 16]. In this model, each node
can be represented by a single automaton that affects the rest of the system, the environment. In turn, the
environment will affect each automaton. Three types of actions are required in this model: input actions,
output actions, and internal actions. Input actions are those actions which have the environment affecting
the automaton. Output actions are those which have the automaton affecting the environment. Internal

*Contact author: Ajoy Kumar Datta, Department of Computer Science, University of Nevada, Las Vegas, Las Vegas, NV
89154-4019, USA, Email: datta@cs.unlv.edu, Phone: (702) 895-0870, Fax: (702) 895-4075

actions are those which have the automaton affecting itself. The formal definition of an I/O automaton
is a five tuple (5; A, G, R,I) where S is the set of states, A is the set of actions, G is an action signature
(that classifies the action set into input, output, and internal actions), R C § x A x § is the transition
relation or set of valid state transitions, and I C § is the set of initial states. In self-stabilizing algorithms,
I = § since no initialization is assumed. This model is called a UIOA or uninitialized I/O automaton.
More details about the I/O automaton model can be seen in [13, 16]. Additionally, our system model
assumes that links are initially bounded. In that we take a constant bound k to be the maximum number
of messages in any given link when the system starts. This assumption is reasonable, since in practice all
links must be bounded.

The problem of heap maintenance as defined in this paper is what is widely considered max-heap
maintenance in the literature [8, 11]. This type of heap is one in which any node in the network has a
larger value than its child node. This type of heap has several uses including efficient sorting. Additionally,
the problem in the context of this paper will allow for a general tree network rather than the traditional
balanced binary tree of the sequential heap maintenance algorithm. This is mainly due to the efficiency
at which such a structure can be created on a general network topology. More formally, we define the
problem to be:

Definition 1.1 The distributed heap maintenance problem consists of the following instance and question:
Instance: A tree network T = (V,E) with a set of nodes V such that all nodes know their parent
(stored in parent;) and their set of neighbors in the spanning tree (stored in V;), and a set of edges E.
FEach node i € V has a hard coded value val;.
Problem: To have each node i € V take a final value final_val; with the following properties:
(i) 3j € V such that final_val; = val;
(ii) final_val; < final_valy such that k € V A parent; = k

We are not aware of any existing solution of the problem of maintaining such a heap in a dynamic
distributed environment. This paper presents a protocol that will first create a max-heap (in the sequel
called simply a heap) in a tree structured network with no initialization of va,-riables, and then maintain
this heap in the presence of transient faults. It is assumed that any of a number of self-stabilizing spanning
tree protocols is used as an initial wave in the protocol [3, 7, 10]. Such a protocol will stabilize the N; sets
and parent; variables. This assumption allows the algorithm to be assumed applicable to general network
topologies. Each node has an internal value val; which is assumed non-corruptible either by inclusion in
non-volatile storage or by being hardware coded in each node. The root node will take the largest value
in the system, and all of its children will have larger values than their children. In this same manner, all
nodes will take larger values than their children.

The protocol presented here stabilizes in time proportional with the the number of nodes in the sys-
tem times the height of the tree. Time complexity assumes the common presumptions for distributed
computations: local computation is negligible, and sent messages are received in constant time.

The remainder of the paper is organized as follows. Section 2 covers the data structures and protocol for
the heap maintenance problem, while Section 3 provides the correctness arguments of the given protocol,
and Section 4 provides some summary information and conclusions concerning the given protocol.

2 The Protocol

The nodes are synchronized through the use of counters ¢; at each node. A given node ¢ will only accept
a Token message from its parent if the counter passed is different from ¢;. Likewise, node ¢ will only
accept a Token message from its child if the counter passed is the same as ¢;. Since only the root 7 can
create new counter values, once stabilized the protocol works in waves. A wave can be defined as the set
of Tokens starting from the root with a specific counter value, broadcast down the tree to the leaves, and
final broadcast back up the tree to the root. Each new correctly synchronized wave will begin with a fresh
counter. A fresh counter is one that does not exist anywhere in the system, either at the nodes or in the
links. If node r believes that nothing has changed in the tree during the last wave, then 7 initiates a reset
wave. During a reset wave all nodes reset their local values to insure that only true values exist in the
system. True values are those based on correct system information rather than the possibly false initial
values that exist in the system due to random initialization of the protocol. In doing this, r initializes
its working final value to its own hard coded value, val,. The working final value, sr_final val;, is the
variable where the heap is constructed at each node. This variable may change a number of times during
each heap building process. Node r then passes the reset information on by sending the information to
its children that nothing has changed in the tree. These nodes then reset themselves in the same manner;
they set their working final value to their hard coded value val;. This passes down the tree where at the
leaves the working values are set the hard coded values and then a change in their own values is indicated.
The leaves then pass along their_values with the fact that a change has occured. Internal nodes check to
see if there has been any change in the subtree rooted at them. If there is a change, these nodes heapify by
determining the new maximum value in that subtree. If the maximum came from one of its descendents,
an exchange with that child the value was received from is made. In this way; the smaller values cascade
to the bottom of the tree while larger values filter up to the top of the tree. Once all nodes have come
to a point where they have greater values than all of their children, the heap is created. At this point a
false change status will filter up the tree to the root who will initiate another reset. Change status refers
to whether or not a change has been made in the subtree rooted at a particular node i. It is kept in the
variable sr_change;. :

In order to keep the heap information around during resets and subsequent rebuilding of the heap,
during the reset process the working final values are copied to an actual final value, final_val; that is not
touched except in a reset.

The reset wave is what allows the information to stabilize. When each node finds the reset status to
be true, it resets its working final value to its actual hard coded value. In this way, all false final values are
flushed out of the system. At the leaves, additionally the maximum value of their subtree (which consists
of only themselves) is set to this reset working final value. As this information travels up the tree and the
internal nodes heapify, the internal nodes change their maximum values to the reset working final value
before comparing with descendent values. In this way, all false values are flushed out of the system. Due
to the nature of self-stabilizing algorithms, this reset must repeat continuously. This is because there is no
way of knowing if the current reset is rebuilding the correct heap or flushing out false values. Additionally,
if new nodes enter the system, they will have to have their information added into the heap process. This
can only occur if the heap is constantly being rebuilt.

Between resets, a series of waves work to filter the proper values to each node. At the end of the the
reset wave, the root will have the highest value in the system as its final value. In the first wave following
a reset, the children of the root will take the highest values in the subtrees rooted at them (excluding that
value already taken by the root). Recursively, after each wave the next deeper set of nodes in the tree will
take the maximum value occurring within the subtree rooted at themselves (excluding any values taken by
nodes above them). In this way, the heap is built in a number of waves proportional to the height of the
tree.

The variables used in this protocol can be seen in Figure 1. The functions used in this protocol as seen
in Figure 2 work as follows: The function CHOOSE(M az, ¢) takes a value between 0 and Maz to be the
new counter value. This choosing can be done in three separate ways detailed in [16]). We will assume the
increment instance of this function because it makes the proofs easier to follow, and does not adversely
effect the overall stabilization time of the protocol.

The function FINISHED is a boolean function that determines whether or not a particular node has
received a message back from all of its children in the current wave. Leaves always return true on this
function since they have no children.

The function COMPUTE_MAXIMUM works by making the maximum value, maz_val;, at node i
be its working final value. Then, i compares this maximum value with each value received from its children
J, rval_¢;[5]. If it finds any child’s value to be greater than the current maximum value, it takes that value
as its maximum and remembers which child the value came from in the maz.c variable.

The RESET function first has the node 7 set its change status to true so that another reset does not
occur prematurely. Then, ¢ copies the working final value over to the actual final value in order to maintain
the heap just created. The working final value is initialized to the hard coded value at node i. Finally, in
leaf nodes only, the sr_change; variable is set to true ending the reset wave. -

The function EXCHANGE will prepare to send the current working value at node 7 to that child
from whom the greatest value higher than this working final value came. Then, node ¢ prepares to send
back the values last received by all other children. Finally, node i takes the value it stored using the
COMPUTE_MAXIMUM function and places it in the working final value.

In the function HEAPIFY, node i first determines whether or not to a,c-tua.lly heapify the subtree
rooted at it by checking the change status received from each of its children (r-change_c;[7]). If the change
status is false from all of its children, it prepares to pass the false change status to its parent. If, however,
the change status is ¢rue from at least one child, node i will prepare to pass on the true change status to
its parent and run the function COMPUTE_MAXIMUM. If no greater value came from the subtree,
then node i prepares to send back the same values that came from all of its children. If indeed, a new
maximum value was sent up the subtree, node 7 will run the function EXCHANGE.

Given these supporting functions, the actual actions at each node given in Figure 3 are as follows:
ROOT_START, is only used by the root and upon receiving all expected messages from its children (as
determined by running the FINISHED function), node r will check to see if any change has been made
in the tree. If no change has occured, a reset wave is initiated in 7 by setting 7’s reset status to true and
calling the function RESET. A new counter value is created by using the CHOOSE(Maz, c) function.
Finally, r will set itself to expect new values from its children thus starting a new wave.

The SEND; ; action will set the counter value to be sent from a node 4 to be the actual counter value

¢; at that node 7. Then, there are two cases. One case for sending to a child, and one case for sending to
a parent. In the first case, node 3 will simply send that value either last sent by the child in question, or
the last working final value for node ¢. This is determined by whether or not the last HEAPIFY ran the
EXCHANGE function or not. The most recent change status as well as the current reset status are sent.
In the second case, internal nodes will merely send up the change status along with the maximum value
from the subtree of i and the current reset status. If, however, the node is a leaf, then it has to additionally
set the change status to false if it was rue since after sending the true value the leaves will remain as they
are. If this is a reset wave, the leaf will set its reset status to false, and reset its maximum value to its
own hard coded value. If it is not a reset wave, then the leaf will set its max value to its working final
value.

The RECEIVE;; action also has two cases: for receiving from a parent, and for receiving from a child.
In the first case, the node will only take the information if the counter value is different. If this is so, then
the node i will take the value, change status, reset status, and counter value from the Token. The node
will then set itself to expect new information from all of its children propagating the current wave. If the
current wave is a reset wave then node i will reset using the RESET function. If it is not a reset wave,
then node i will check to see if it is receiving back the same value or some new smaller value. If it is the
same value, node i will indicate no change has been made in its subtree. If it is a new value, then that
value is accepted, and a change is indicated. In the second case, if the counter value is the same as c;,
node i will check to see if the received message is expected. If not, 7 will discard the message so as to avoid
receiving new information before the next wave breaking synchrony. If the message is expected, ¢ will set
itself to no longer expect a value from its child since it is now receiving it. Then, it sets its received value
from that child as well as the status of its child’s subtree. Finally, ¢ will take its child’s reset status and if
i has received information from all of its children, then it will run the HEAPIFY function.

3 Correctness Reasoning

Lemma 3.1 Any counter value ¢ sent by the root node will reach and be accepted by all nodes in the tree
within O(h) time, where h is the height of the tree. :

Proof: By induction on the distance from the Toot. We will consider the distance from the root to be
the number of links between a particular node ¢ and the root node r.

Basis: Distance of zero means that 7 is the root node r. It is trivial to see that the root has the value
¢ since that value is created at the root node using the CHOOSE(Maz, ¢) function.

Induction: The induction hypothesis is that all nodes at a distance §—1 from the root will have received
and accepted the value c. It must be shown that all nodes at a distance § receive the counter value c. All
nodes at distance § — 1 will send their current counter value ¢ to their children. These children will accept
these Tokens carrying the counter value ¢ only if their own counter value ¢; is different. However, if a child
does not accept the Token message, then ¢; = c. If a child does accept the Token, it will immediately
set its counter value ¢; to be ¢. Therefore, since all nodes at distance 6 from the root must be children of
nodes at distance § — 1 by definition, all nodes at distance & will receive and accept the counter value c.
Since the counter value is sent and received in constant time, all nodes will have received the new counter

value in time proportional to the height of the tree, O(h). O
Lemma 3.2 A new counter will be created at the root within O(h) time from any arbitrary initial state.

Proof: A new counter will be produced at the root node r by the CHOOSE(Maz, ¢) function whenever
FINISHED is true at 7. This yields two cases.

Case 1: The root is initialized with FINISHED true. In this case, a new counter is produced in O(1)
time.

Case 2: The root is expecting at least one message from a child and thus FINISHED is false at r.
Thus, the root will continually send Tokens with some old value ¢ = ¢,;3. By Lemma 3.1 ¢ = Cola Will
have reached all nodes in the network within O(h) time. Once a leaf node receives the value ¢ = ¢,y it
will begin sending Tokens to its parent with the same counter value. All parents will accept these values
since they will also hold the counter value ¢ = ¢,y by Lemma 3.1. In the same way all of these nodes will
send to their parents and by induction on the maximum distance of a node from a leaf, all nodes up to the
root will receive T'okens with the value ¢ = c,;4. Once the root has received Tokens with value ¢ = Cold
from all of its children, FINISHED is true at r. Clearly, the Tokens travel up the tree in the same time
as they travel down the tree, O(h). Therefore, the new counter is created in O(h) time from any arbitrary
state of the network. O

Lemma 3.3 A fresh counter will be produced at the root within O(nh) time from any arbitrary initial state
if the increment version of CHOOSE(Maz,c) is used.

Proof: A new counter is produced at the root every O(k) time by Lemma 3.2. Since links are initially
bounded, at most k¥ counter values exist in any link, where k is the constant bound on any link. Given n
nodes in the network, at most n values exist at the nodes. There will be at most n — 1 edges in the tree.
Therefore, there will be at most ¢me; = k(n — 1) + n values in the network when started. If the range of
possible values for counters is set to be 0..Maz with Maz > cpqz, then we can say that there exists a
value ¢’ that is not yet in the system. Therefore, at most ¢,,,, new counter values can be created at the
root using the increment function before ¢’ is created at the root. Since ¢’ was not previously in the system
it is a fresh counter by definition. Since a new counter is produced in O(h) time by Lemma 3.2, and at
most Crmqp New counters will be created before a fresh counter is created, ¢,q, X O(h) time is needed to
create a fresh counter. Since ¢pqar = k(n — 1) + n a fresh counter is produced at the root in O(nh) time.
It is assumed that the constant k¥ << n and therefore is ignored in the overall complexity. O

Lemma 3.4 The root will initiate a reset wave within O(h?) time from the time a fresh counter is produced.

Once a fresh counter ¢y is produced, all nodes in the system will be participating in the same wave.
This is because no node will have the value ¢s by definition, and all nodes in the system will receive the
value ¢; by Lemma 3.1. Thus, the nodes can only receive the value ¢y by accepting tokens from their
parents containing the value cy.

A reset will occur only when the root believes that there is no change in the tree (i.e. when sr_change,
is false). This can happen in two ways. One case is when the root is initialized to believe this, the other

is when all of its children believe that the change status is false and they forward this information to r so
that r sets sr_change, to false.

Case 1: If the root is initialized to believe that there is no change in the tree, then it will initialize a
reset in constant time.

Case 2: If at least one child i of 7 believes a change has occured, then it will propagate downward
the Token with counter value ¢; to a leaf node. Once the leaf node receives this, it will send back its
working final value as its maximum to its parent. There are two sub-cases for every parent j as information
propagates back up the tree. Either node j is told that its sub-tree has not changed or that it has.

Sub-case 1: If node 7 is told by a child that the sub-tree has not changed, then j will simply propagate
the same information back up the tree as it previously did. Also, the indication of no change is forwarded
to j’s parent.

Sub-case 2: If node j is told by a child that the sub-tree has changed, j will determine if the change
has created a new maximum value. If a new maximum was created, j takes that maximum, and forwards
it to its parent, otherwise it sends up its previous maximum. Also, the indication of a change is forwarded
up to j’s parent.

We can now proceed with an inductive argument based on the maximum distance a node is from a leaf.

Basis: Leaf nodes will have no change immediately after sending their working final value up to their
parents. A leaf will send this no change indication up to its parent during the next wave.

Induction: The induction hypothesis says that all nodes at most § — 1 links from a leaf will have taken
no change in § waves. Thus, these nodes will send this indication to their parent along with the same
information as was previously sent. Thus, this parent will find no change when the HEAPIFY function
is run and send that change status to its parent in the following wave.

Clearly, the root will find no change in O(h) waves. Each wave will také O(h) time by Lemma 3.2
above. Thus, the total time for the no change to be decided is O(h?). o

Lemma 3.5 A reset wave will always have all nodes i set all their variables except for the final; variable

to true system values.

Proof: Starting at the root (i = r), node ¢ will run the RESET function. This function does the
following: r_change_c;[k] for all children k of i is set to true. The working final value will be set to the
hard coded value val;. At the leaves, sr_change; will be set to true indicating a change in its sub-tree (i.e.
itself). As the reset propagates down the tree, the token_ezpected arrays are set to {rue.

Now, we need to use an inductive argument based on the maximum distance from a leaf node.

Basis: Once a leaf node resets, it will set its reset_status; to false and its maz_val; to be its hard
coded wal;. This information is then sent to its parent. The arrays r_val_c; and s_val_c; and the variable
maz_c; have no meaning. So, without the loss of generality it can be assumed that these variables do not
exist in leaf nodes.

Induction: The induction hypothesis is that all nodes at a distance at most é — 1 from a leaf node have
taken true system values for all of their variables. Thus, when a node ¢ at level § receives T'okens from
its children, the following will happen. The r_val.c; array will take the true system values sent from its
children. Node i will also take reset_status; to be false. Additionally, node ¢ will HEAPIFY computing

a new maximum value since its child will indicate a change in the tree. In doing this, i will first set its
maz_val; to be its already reset working final value. If necessary, ¢ will take its maximum to be a reset
r_val from one of its children. Either ¢ will set the values in the s_val_c; array to be the reset r_vals sent
to ¢, or the reset maz_val; in 7. In either case, the values are true. If a new maximum is taken at ¢, it will
set its maz_c variable to be that child it received the new maximum from. If not, maz_c will not be used
and therefore will of no consequence if it is not reset.

Thus, all variables are reset to true values in the system except for the actual final values. (]

Lemma 3.6 The mazimum value in the sub-tree rooted at a node i will reach i within O(h) time following
a reset.

By induction based on maximum distance from a leaf.

Basis: The leaf will receive the maximum value in its sub-tree, since it will be reset to taking its hard
coded value as its working final value and its maximum value as shown in Lemma 3.5. Additionally, a leaf
is the only node in its sub-tree.

Induction: The induction hypothesis is that all nodes at distance § — 1 will have the maximum value
in their sub-tree. The nodes at level § — 1 will send these maximum values to their parents. The parents
upon receiving these values will compare them with their current maximum values to see if any of them
are greater, if they are, the parent will take that value and send its smaller value back down the tree to
the node that the maximum value came from. Since a node at maximum distance § from a leaf will only
have nodes with their sub-tree’s-maximum as children, by the induction hypothesis, these nodes indeed
take the maximum value in their sub-tree. It has been established in Lemma 3.3 that information travels
up the tree in O(h) time. _ O

Lemma 3.7 The correct heap will be created at the working final values within O(h?) time from the
initiation of a reset wave.

Proof: By induction on distance from the root.

Basis: By Lemma 3.5, all values are reset to true values, and if a new maximum is found in a node i’s
sub-tree, node 7 will take that value by Lemma 3.6. In this way, the root will take the largest value in the
tree by the end of the reset wave. This is r’s proper value in the heap.

Induction: The induction hypothesis is that all nodes at a distance § — 1 from the root have taken their
proper value in the heap. By Lemma 3.6, the maximum value in i’s subtree will reach i. Since all nodes
at a distance § — 1 from the root are okay by the induction hypothesis, no exchange will occur.

This inductive process works such that at each wave, one greater distance from the root will take their
proper value in the heap. Thus, the time complexity of O(h?). i

Lemma 3.8 Once the correct heap is created in the working final values at the nodes, the correct heap will
be copied to and remain in the final value variables barring any perturbations to the network.

Proof: Once the heap is created at the working final values at the nodes, no more exchanges are made
and a reset occurs. During the reset process, the correct heap values are copied from the working final
values to the actual final values at each node. The only time the actual final values are touched is during

8

the reset process. By lemmas 3.5 and 3.7 the correct heap will again be created before the next reset.
Thus, the proper heap will again be copied into the final values. o

Theorem 3.1 The protocol given in Section 2 is a correct distributed heap maintenance protocol for tree
structured networks with O(nh) stabilization time.

Proof: Synchronization is achieved in O(nh) by Lemma 3.1. Once synchronization is achieved through
the first fresh counter, a reset will occur within O(h?) time by Lemma 3.4. The reset initializes the system
to contain only true system values by Lemma 3.5. After this initialization, another O(h?) time is needed
to build the heap in the working final values at each node by Lemma 3.7. Finally, during the second reset
the actual final values take the proper heap values and these values hold by Lemma 3.8. This last step
only takes O(h) time since it is only one wave in length. Thus, the algorithm is correct and stabilizes in
O(nh) + O(h?) + O(h?) + O(h) = O(nh) time, since h < n. 0

4 Conclusions

This paper provides the first distributed heap maintenance protocol on a tree network. It should be noted
that this protocol works on a general tree structure rather than the traditional balanced binary tree.
Additionally, the protocol presented is self-stabilizing in nature which guarantees that the protocol handles
transient faults. In doing so, no human intervention is ever required to insure eventual recovery from such
errors as machines leaving and entering the system, random variable corruption at nodes, message loss,
message corruption, message reorder, and loss of synchronization. The stabilization is achieved due to an
underlying use of the counter flushing paradigm of Varghese [16]. This algorithm runs in O(nh) time.

References

[1] Y. Afek, S. Kutten, and M. Yung, “Memory-Efficient Self-Stabilizing Protocols for General Networks,”
Proceedings of the 4th International Workshop on Distributed Algorithms, Bari, Italy, September 1990,
pp- 15-28. ;

[2] A. Arora and M. Gouda, “Closure and Convergence: A Foundation for Fault-Tolerant Computing,”
IEEE Transactions on Software Engineering, Vol. 19, No. 11, November 1993, pp. 1015-1027.

[3] A. Arora and M. Gouda, “Distributed Reset,” Proceedings of the 10th Conference on Foundations of
Software Technology and Theoretical Computer Science, Bangalore, India, December, 1990, pp. 316-331;
also to appear in IEEE Transactions on Computers.

[4] A. Arora, M. Gouda, and G. Varghese, “Constraint Satisfaction as a Basis for Designing Nonmasking
Fault-Tolerance,” Proceedings of the 14th International Conference on Distributed Computing Systems,
Poznan, Poland, June 1994, pp. 424-431; also to appear in J. High Speed Networks.

[5] B. Awerbach, B. Patt-Shamir, and G. Varghese, “Self-Stabilization by Local Checking and Correction,”
Proceedings of the 32nd Symposium on Foundations of Computer Science, San Juan, Puerto Rico,
October 1991, pp. 268-277.

[6] B. Awerbach and G. Varghese, “Distributed Program Checking: a Paradigm for Building Self-
Stabilizing Distributed Protocols,” Proceedings of the 32nd Symposium on Foundations of Computer
Science, San Juan, Puerto Rico, October 1991, pp. 258-267.

[7] N. Chen, H. Yu, and S. Huang, “A Self-Stabilizing Algorithm for Constructing Spanning Trees,” In-
formation Processing Letters, Vol. 39, 1991, pp. 147-151.

[8] T. Cormen, C. Leiserson, and R. Rivest, Introduction to Algorithms, The MIT Press, Cambridge,
Massachusetts, 1990.

[9] E. Dijkstra, “Self-Stabilizing Systems in Spite of Distributed Control,” Communications of the ACM
17, pp. 643-644, 1974.

[10] S. Dolev, A. Israeli, and S. Moran, “Self-Stabilization of Dynamic Systems Assuming only Read/Write
Atomicity,” 9th Annual ACM Symposium on Principles of Distributed Computing, Quebec City,
Canada, 1990, pp. 103-117; also Distributed Computing, 1993.

[11] E. Horowitz, S. Sahni, and S. Anderson-Freed, Fundamentals of Data Structures in C, Computer
Science Press, New York, 1993.

[12] S. Katz and K. Perry, “Self-Stabilizing Extensions for Message-passing Systems,” Proceedings of the
9th Annual ACM Symposium on Principles of Distributed Computing, Quebec City, Quebec, August
1990, pp. 91-101; also Distributed Computing, 1993.

[13] N. Lynch and M. Tuttle, “An introduction to input/output automata,” CWI Quarterly, Vol. 2, No.
3, 1989, pp. 219-246. ,

[14] M. Schneider, “Self-Stabilization,” ACM Computing Surveys, Vol. 25, No. 1, March 1993, pp. 45-67.
[15] G. Varghese, “Self-stabilization by local checking and correction,” Ph.D. thesis, MIT, 1992.

[16] G. Varghese, “Self-Stabilization by Counter Flushing,” Proceedings of the 13th Annual ACM Sympo-
sium on Principles of Distributed Computing, Los Angeles, California, August 1994. :

10

N;

parent;

Ci
token_expected;[j)
reset_status;
val;

sr_val;
maz_val;
final_val;
sr_final val;
sr_change;
r_val_c;[j)
s_val_¢;[j)
r_change_c;[j]
maz._c

The state of each node 7 consists of:

the set of neighbors of the node ¢ in the spanning tree.
the id of the parent node of ¢

-a counter

a boolean flag for each child j of ¢

the status of whether or not the current wave is a reset wave
the hard coded value at the node

a value being sent/received

the maximum value of the subtree rooted at 1.

the final value; after the heap is constructed

the working final value used during heap construction

the change status of the sub-tree rooted at node ¢

the last value received from child j of ¢

the next value to be sent to child j of ¢

the change status of j’s sub-tree as sent to ¢

the child of the node from which the maximum value was received

Figure 1. The variables and data structures used by the heap maintenance protocol.

11

A token message is encoded as a. tuple (T'oken,c, st_val, sr_change, reset_status) where the variables
Token,c,srval, and sr_change contain the values of a node being sent /received.

FINISHED (* boolean function; set to true when not expecting tokens from any children *)
Return true if for all children k of i: token_ezpected;[k] = false
Return true if is a leaf node

COMPUTE_MAXIMUM (* computes maximum value of the tree rooted at i *)
maz_val; = sr_final _val;
For all children % of ¢
If 7_val_c;[k] > maz_val;
maz_val; = r_val_c;[k]; mazc=k

RESET (* *)
For all children k of i : r_change_c;[k] = true
final_val; = sr_final_val;
sr_final_val; = val;
If (|N;] =1 and i # r) (* i is a leaf node *)
sr_change; = true

EXCHANGE (* exchanges sr_final_val; with the largest value received from the children *)
s_val_c;[maz_c] = sr_final_val;
For all children k # maz_c of i : s_val_c;[k] = r_val_c;[k]
sr_final_val; = maz_val; :

HEAPIFY (* *)
(* update maz_val; and sr_change; *)
If (r_change_c;[k] = false for all children k of 7)
sr_change; = false e
Else (* at least one node in the tree of i changed *)
sr_change; = true
COMPUTEMAXIMUM
If maz_val; = sr_final_val; (* no exchange of values *)
For all children & of ¢ : s_val_c;[k] = r_val_c,-&{c]
Else EXCHANGE (* exchange sr_final_val; with the largest value received from the children *)

Figure 2. The supporting functions used by the heap maintenance protocol.

12

ROOT_START, (* Leader starts a new cycle of broadcasting values.)
Preconditions:
FINISHED
Effects:
(* if there is .no change of values in the tree then broadcast no change
and reset various variables ¥)
If sv_change, = false (* initiate a reset process *)
reset_status, = true; RESET
¢, =CHOOSE(Maz, c) (* choose new counter value *)
For all children of k of r : token_expected,[k] = true

SEND,-,j(Token,c,sr_val,sr_change,reset_status) (* Node ¢ sends token to node j *)
Preconditions:
¢ = ¢; (* counter of token matches node counter *)
If j # parent; (* j is a child of ¢ *) (* send values equal to stored values *)
sr_val = s_val_¢;[j]
sr_change = sr_change;; reset_status = reset_status;
Else If (j = parent; and FINISHED) (* j is the parent of ¢ *)
* send value equal to the current maximum values *)
sr_change = sr_change;
If (|N;] =1and i # r) (* i is a leaf node *)
If sr_change;
sr_change; = false
If reset_status;
reset_status; = false; maz_val; = val;
Else maz_val; = sr_final_val;
sr_val = maz_val;; reset_status = reset_status;

RECEIVE; ;(Token, c, st _val, sT_change, reset_status) (* Node i receives token from node j *)
Effects:
If (j = parent; and ¢ # ¢;) (* new counter from parent 5
(* set stored values equal to values in token message *) .
sr_val; = sr_val; sr_change; = sr_change; reset_status; = reset_status
¢; = ¢ (* set local counter equal to counter in token message *
For all children k of i : token_ezpected;[k] = true
If reset_status; (* root initiated a reset process *)
RESET
Else If sr_final_val; = srval
sr_change; = false
Else sr_final_val; = sr_val;; sr-change; = true
Else If (j # parent; and ¢ = ¢;)
If token_ezpectediy
token_expected;[j] = false; rval _c;[j] = srval
* r_change_c[j] = sr-change; reset_status; = reset.status
If FINISHED :
HEAPIFY

Figure 3. The heap maintenance protocol.

13

Paper Number 6

Asynchronous Fault-Tolerant One-Dimensional Cellular Automata

Peter Gacs

< A. F g T . s : ’ = o R — —— : - “, — ‘;_ .

Asynchronous fault-tolerant one-dimensional cellular automata
(Abstract)

Peter Gacs™
Boston University

Abstract

In a probabilistic cellular automaton in which all local transitions have positive probability, the problem of
keeping a bit of information for more than a constant number of steps is nontrivial, even in an infinite automaton.
Still, there is a solution in 2 dimensions, and this solution can be used to construct a simple 3-dimensional
discrete-time universal fault-tolerant cellular automaton. This technique does not help much to solve the following
problems: remembering a bit of information in 1 dimension; computing in dimensions lower than 3; computing in
any dimension with non-synchronized transitions.

Our more complex technique organizes the cells in blocks that perform a reliable simulation of a second
(generalized) cellular automaton. The cells of the latter automaton are also organized in blocks, simulating even
more reliably a third automaton, etc. Since all this (a possibly infinite hierarchy) is organized in “software”,
it must be under repair all the time from damage caused by errors. A large part of the problem is essentially
self-stabilization recovering from a mess of arbitrary-size and content caused by the faults.

The present paper outlines the construction of an asynchronous one-dimensional fault-tolerant cellular au-
tomaton. It is more modular than our earlier papers on the subject and its construction is more amenable to the
addition of further features like self-organization.

1 Introduction

Fault-tolerant computation and information storage in cellular automata is a natural and challenging mathematical
problem but there are also some arguments indicating an eventual practical significance of the subject since there
-are avantages in uniform structure for parallel computers.

Since large groups of errors can destroy large parts of any kind of structure, self-stabilization techniques are
needed in conjunction with traditional error-correction.

1.1 Previous work

The problem of reliable computation with an unbounded number of unreliable components and constant error
probability was addressed by John von Neumann in [15] in the context of Boolean circuits. Von Neumann’s solution,
as well as its improved versions in [3] and [13], relies on high connectivity and non-uniform constructs.

Of particular interest to us are those probabilistic cellular automata in which all local transition probabilities are
positive, since such an automaton is obtained by way of “perturbation” from a deterministic cellular automaton.
The automaton may have e.g. two distinguished initial configurations: say Xo in which all cells have state 0 and X
in which all have state 1. Let p;(z,t) be the probability that, starting from initial configuration X;, the state of cell
z is i. If pi(z,t) > 2/3 for all z,t then we can say that our automaton remembers the initial configuration forever.

Informally speaking, a probabilistic cellular automaton is called ergodic if it eventually forgets all information
about its initial configuration. (Ergodicity implies that this information will be forgotten but it means more: we
pospone its technical definition.) Finite cellular automata with all positive transition probabilities are always ergodic.
In the example above, one can define a “relaxation time” as the time by which the probability decreases below

*Email: gacs@cs.bu.edu, Fax: (617) 353-6457, Phone: (617) 353-2015. This research was supported in part by NSF grant CCR-
9204284.

2/3. If an infinite automaton is ergodic then the relaxation time of the corresponding finite automaton is bounded
independently of size. A minimal requirement of fault-tolerance is therefore that the infinite automaton be nonergodic.

The difficulty in constructing nonergodic one-dimensional cellular automata is that due to the positive local
transition probabilities eventually large islands will randomly occur. We can try to design the a transition rule that
(except for a small error probability) attempts to decrease these islands. It is a natural idea that the rule should
replace the state of each. cell, at each transition time, with the majority of the cell states in some neighborhood.
However, majority voting among the five nearest neighbors (including the cell itself) seems to lead to an ergodic
rule if the “failure” probabilities are not symmetric with respect to the interchange of 0’s and 1’s, and has not been
proved to be nonergodic even in the symmetric case. Perturbations of the one-dimensional majority voting rule were
actually shown to be ergodic in [8] and [9].

Nonergodic cellular automata with positive transition probabilities, for dimensions 2 and higher were constructed
in [14]). The paper [7] applies Toom’s work to design a simple three-dimensional fault-tolerant cellular automaton
that simulates arbitrary one-dimensional arrays. The original proof was simplified and adapted to strengthen these
results in [1].

A simple one-dimensional deterministic cellular automaton eliminating finite islands in the absence of failures
was defined in [6]. See also [2]. It is now believed that perturbation makes this automaton ergodic. A similar rule
that is also in some sense monotonic was proposed lately by Andrei Toom.

The paper [4] constructs a nonergodic one-dimensional cellular automaton working in discrete time, using some
ideas from the very informal paper [11] of Kurdyumov. These constructions rely on an infinite hierarchy of simulations.
The paper [5] constructs a two-dimensional fault-tolerant cellular automaton. In the two-dimensional work, the space
requirement of the reliable implementation of a computation is only a constant times greater than that of the original
version. (The time requirement increases by a logarithmic factor.)

Asynchrony In the three-dimensional fault-tolerant cellular automaton of [7], the components work in discrete
time (with a global clock) and switch simultaneously to their next state. This requirement is unrealistic for arbitrarily
large arrays. The natural model for asynchronous probabilistic cellular automata is that of a continuous-time Markov
process. This is a much stronger assumption than allowing an adversary scheduler buf it still leaves a lot of technical
problems to be solved.

The paper [1] gives a simple method to implement arbitrary computations on asynchronous machines with oth-
erwise perfectly reliable components. A two-dimensional asynchronous fault-tolerant cellular automaton was con-
structed in [16].)

The present paper constructs a one-dimensional asynchronous fault-tolerant cellular automaton, thus completing
the refutation of the so-called Positive Rates Conjecture in [12].

Proof method sn.mphﬁcatlon A major point of interest in the one-and two-dimensional results is the technique
of handling a large and complex construction and the proof of its correctness. Several methods have emerged that
help the harnessing of complexity, but the following two are the most important.

A number of “interface” concepts is introduced (generalized simulation, generalized cellular automaton) helping to
separate the levels of the infinite hierarchy, and making it possible to speak meaningfully of a single pair of
adjacent levels.

Though the construction is large, we present its problems more-or-less one at a time and give a construction for
solving each. E.g. the messiest part of the self-stabilization is the so-called Attribution Lemma, showing how
after a while all cells can be attributed to some large organized group (colony). This lemma relies mainly on
the Purge and Decay rules, and will be proved before introducing other major rules. It is not possible to ignore
the other parts of the construction in this method, but we use the undefined parts only through “interface
conditions” (specifications).

The new result and the new method of presentation will serve as a firm basis for other new results. One feature
that will be easy to add can be called self-organization. This means that the system can be started from a simple
initial configuration in which, essentially, the input of the computation is periodically repeated.

An other new problem likely to yield to the new framework is the growth rate of the relazation time as a function
of the size of a finite cellular automaton. At present, the relaxation time of all known cellular automata is either

bounded (ergodic case) or grows exponentially. We believe that our constructions will yield examples for other,
intermediate growth rates as well.

2 Cellular automata

In this paper, we confine ourselves to one-dimensional cellular automata, mostly infinite ones.

2.1 Deterministic cellular automata

We define cellular automata in a slightly more general way than usual. The set C of sites is an additive subgroup
of the set of all real numbers, or of the set of real numbers modulo a fixed number R. Usually, C is defined as
the set of integers, but we will also use the case when C is the set of rational numbers, or the set of multiples of a
real number B. In a space-time vector (z,t), we will always write the space coordinate first. A configuration is a
function £(z) assigning a state to each site from a finite set S of states. One of these states is a special one called
Vacant. If £(z) = Vacant then we will say that there is no cell at site z. There is a positive number B such that
in each configuration, the distances between cells (nonvacant sites) are multiples of B. For a cell z, we will call the
interval [z — B/2,z + B/2) with center z its body and the number B its body size.

An evolution is a partial funcion n(z, t) assigning a state to each site at each time within the interval of interest.
In discrete-time cellular automata, state transitions occur only at integer times. More generally, it is useful to allow
the time between neighboring cell state transitions to be a positive number T not neccessarily equal to 1.

A deterministic cellular automaton is determined by B, T and a local transition rule Trans(): we can denote
it by

CA(Trans, B, T).

For such a cellular automaton, trajectories are those evolutions that obey the rule everywhere: An evolution 7 is
a trajectory if : y
"7(35:75) = ﬂaﬂs(’?(” = Blt o T)$ 77(93: t): 7?(3 + B?i . T))

holds for all z,t. Given a configuration £ over the space C and a transition function, there is a unique trajectory 7n
with the given transition function and the initial configuration 5(-,0) = §.

2.2 Fields of a cell

The evolution of a deterministic cellular automaton can be viewed as a “computation”. Moreover, every imaginable
computation can be performed by an appropriately chosen cellular automaton rule. Indeed, the Turing machine can
be considered a special cellular automaton.

We will deal only with cellular automata in which the states of the cells are binary-strings of some fixed length.
The length of these strings (i.e. the binary logarithm of the number of states) will be called the capacity of the
cellular automaton, and will be denoted by Cap. If a cellular automaton has capacity greater than 1 then the
information represented by the state can be broken up naturally into parts. If e.g. the capacity is 12 we could
subdivide these bits into strings of lengths 2,2,1,1,2,4 respectively called fields, and call these the input, output,
mail coming from left, mail coming from right, memory and workspace. We can denote these as Input, Qutput, Mail;
(j = —1,1), Mem and Wk. If 5 is a state then s.Input denotes the first two bits of s; s.Mail;. means the sixth bit of
s, etc.

Fields are always either disjoint or contained in each other. When we join e.g. the input fields of the cells at
different sites we can speak about the input track, like a track of some magnetic tape. Fields will sometimes be also
called variables. This suggests to view the state of each cell as the internal configuration of a little computer during
the execution of a program: a variable in a programming language would refer to a certain part of the memory.

2.3 Probabilistic cellular automata

A random evolution is a pair g, where p is a probability measure over some space Q, together with a measurable
function 7(z,,w) which is an evolution for all w € Q. We will generally omit w from the arguments of 7.

A probabilistic cellular automaton M is characterized by saying which random evolutions are considered
trajectories. Thus, now a trajectory is not a single evolution but a distribution. A random evolution will be called a
trajectory if it satisfies a certain local condition on the distribution. The condition depends on a transition matrix

Trans_prob(s | r_1ro,71).

It says that the random evolution 7 is a trajectory if and only if the following holds. For all z,t,s,r_y, rq, 71, if
n(z+jB,t—T)=r; (j =-1,0,1) and 5(z’,?) is otherwise fixed arbitrarily for all ¢/ < ¢ and for all ' # z, t' =1,
then the conditional probability of n(z,?) = s is equal to Trans(s,r_1,70,71).

A trajectory of a probabilistic cellular automaton is a discrete-time Markov process. If the set of cells is finite,
moreover it consists of a single cell, then Trans_prob(s | 7) is the transition probability matrix of this finite Markov
chain.

2.4 Perturbation

Intuitively, a deterministic cellular automaton is fault-tolerant if even after it is “perturbed” into a probabilistic
cellular automaton, its trajectories can keep the most important properties of the original trajectories.

Let M = CA(Trans, B,T). We will say that a random evolution u;n is a trajectory of the e-perturbation
Ptrb.(M) of M if the following holds. For all ,¢,7_1,70,71, if p(z + jB,t —T) = r; (j = —1,0,1) and n(z’', ")
is otherwise fixed arbitrarily for all ¢ < ¢ and for all 2’ # #, ¢/ = ¢, then the conditional probability of n(z,t) =
Trans(r—i1,70,71) is at least 1 — e.

Deterministic cellular automaton, probabilistic cellular automaton and e-perturbation are special cases of a more
general concept called medium. A medium will be defined later, more generally, by a certain set of “local” restrictions
on random evolutions. Those random evolutions that satisfy these restrictions will be called trajectories.

Note that the medium Ptrb. (M) is not a probabilistic cellular automaton. Rather, no matter how we obtain a
probabilistic cellular automaton by a sufficiently small (possibly not even homogenous) local perturbation from M,
its trajectories will also be trajectories of Ptrb.(M). :

Remembering a few bits Let D be a deterministic cellular automaton and suppose that the bit string that is a
cell state has some field F (it can e.g. be the first two bits of the state). We will say that D remembers field F if

there is an € > 0 such that for each string s € {0, 1}1F| there is a configuration &, such that for all trajectories (u,)
of Ptrb.(D) with 7(-,0).F = &,, for all z,# we have

p{n(z,t).F=s} > 2/3.

In these terms, one result of the paper [4] says that there is a one-dimensional deterministic cellular automaton that
remembers a field.

3 Codes
3.1 Colonies

For the moment, let us concentrate on the task of remembering a single bit in a field called Main_bit of a cellular
automaton. Our non-local organization will be based on the concept of colonies. Let ¢ be a cell and Q a positive
integer with

Q-1

="

The set of Q cells c— Q'B +iB for i € [0, Q) will be called the Q-colony with center ¢, and cell ¢ — Q'B + i B will
be said to have address i in this colony. Cell b belongs to the colony iff i is an integer in [0,Q). The union of the
cell bodies of this colony occupies an interval of size QB with center c.

Let us be given a configuration £ of a cellular automaton M with state set S, and Q some positive integer. The
fact that £ is “organized into colonies” will mean that one can break up the set of all cells into non-overlapping
colonies of size @, using an address field Addr. The value £(z).Addr is a binary string which can be interpreted
as an integer in [0,Q). We will say that a certain @-colony C is a “real” colony of £ if for each element z of C with
address i we have £(z).Addr = 1.

Our cellular automata will not change the value of the address field unless it seems to require correction. In the
absence of faults, if such a cellular automaton is started up with a configuration that is grouped into colonies then
this grouping will survive and the cells can use the Addr field to identify their colleagues withing their colony.

Grouping into colonies seems to help preserving the Main_bit field since each colony has this information in Q-
fold redundancy. The transition rule may somehow involve the colony members in a coordinated periodic activity,
repeated after a period of T steps for some integer T, of restoring this information from the gradual degradation
caused by faults (e.g. with the help of some majority operation).

Let us call T steps of work of a colony of cells a work period. The best we can expect from a transition rule of
the kind described above is that unless too many faults happen during some colony work period the Main_bit field of
most cells in the colony will always be the original one. Such rules can indeed be written: they are not too complex.
But they do not accomplish qualitatively much more than a simple local majority vote for the Main_bit field among
three neighbors.

Suppose that a group of failures changes the original content of the Main_bit field in some colony, in so many
cells that an internal correction is no more possible. The information is not really lost since most probably, neighbor
colonies still have it. But correcting with the help or other colonies requires some organization reaching wider than
a single colony. To arrange this broader activity also in the form of a cellular automaton we need the notion of
simulation.

Let us denote by M; the fault-tolerant cellular automaton to be built. In this automaton, a colony C with center
¢ will be involved in two kinds of activity during each of its work periods.

Simulation: Marﬁpulating the collective information of the colony in a way that can be interpreted as the simulation
of a single state transition of the cell ¢ (of body size @B) of some cellular automaton M>.

Trickle-down: Using the collective information (the state of ¢ in M2) to rewrite the Main_bit field of each cell within
the colony if necessary.

The expression “trickle-down” suggests a view in which the simulated cells are the “higher, bigger entities”,
similar to institutions. Trickle-down will be an uncomplicated operation; let us first concentrate on the simulation.

Of course, even the cells of the simulated automaton Mz will not be immune to errors. They must also be grouped
into colonies simulating an automaton Ms, etc.; the organization will therefore have to be a hierarchy of simulations.

Reliable computation itself can be considered a kind of simulation of a determiiistic cellular automaton by a
probabilistic-one.

3.2 Block codes

Codes on strings The notion of simulation relies on the notion of a code, since the way the simulation works is
that the simulated evolution can be decoded from the simulating evolution. A code, ¢ between two sets X,V is, in
general, just a pair . T where p. : X — Y is the encoding function and ¢* : Y — X is the decoding function
and the relation

P (pa(z)) =2
holds. A simple example would be when X = {0,1},Y = X3, and p.(z) = (z, z,z) while ¢*((z, y, 2)) is the majority
of z,y, z.

This example can be generalized to a case when S5;,S; are finite cell state sets, X = So, Y = S? where the
positive integer @ is called the block size. Such a code is called a block code. Strings of the form . (r) are called
codewords. The elements of a codeword s = @.(r) are numbered as s(0),...,s(Q —1). The following block code
can be considered our main simple example of codes.

(3.1) Example Suppose that S; = Sg = {0,1}!2is the state set of both media M; and M>. As mentioned above, it
is useful to break up the information contained in a state into various functional parts, called fields. Let us introduce
the fields r.Addr and r.Info of a state » = ry ---7r12 in S;. The Addr field consists of the first 4 bits r; ---r4, while
the Info field is the last bit r12. The other bits do not belong to any named field. Let Q = 31. Thus, we will use
codewords of size 31, formed of the cells of Mi, to encode cells of M>. The encoding funcion ¢. assigns a codeword
@u(r) = 5(0) - - - 5(30) of elements of S; to each element r of S;. Let r =7y ---r2. We will set s(z — 1).Info = r; for
i=1,...,12. The 4 bits in s(i).Addr will denote the number i in binary notation. This did not determine all bits of
the cells s(0) - - - 5(30) in the codeword. In particular, the bits not belonging to neither the Addr nor the Info field are

not determined, and the values of the Info field for the cells s(i) with i & [0,12) are not determined. To determine
«(r) completely,-we could set these bits to 0.

The decoding function is simpler. Given a word s = s(0)---5(30) we first check whether it is a “normal”
codeword: if it does not have s(0).Addr = 0 and s(i).Addr # 0 for i # 0 then r = ©"(s) is the special value
Vacant € S;. Otherwise, r; = s(i — 1).Info for i € [1,12].

Informally, the cells of the codeword use their first 4 bits to mark their address within the codeword. The last
bit is used to remember their part of the information about the encoded cell. ¢

A codeword w will be called accepted if p*(w) # Vacant, otherwise it is called rejected. A block code will be
called overlap-free if for every string s(1)---s(n), if both s(1)---s(Q) and s(i + 1)---s(i + Q) are accepted then
i > Q. In other words, a code is overlap-free if two accepted words cannot overlap in a nontrivial way. The code
in Example 3.1 is overlap-free. All block-codes considered from now on will be overlap-free. Overlap-free codes are
used, among others, in [10].

Codes on configurations An overlap-free block code ¢ can be used to define a code on configurations between
a medium M, of some cell size B and a medium M of cell size @B. Suppose that a configuration ¢ of medium M,
is given. Then we define the configuration €. = . (&) of M; by setting for each cell ¢ of £ and i € [0, Q),

§a(c— Q"B +iB) = p.(€(c))(9).

The decoding function is defined correspondingly. Suppose that a configuration £ of M, is given. We define the
configuration £* = ¢*(€) of the medium M; as follows: for cell z, we set £*(z) = ¢*(s) where s is the string

(3:2) £(z—Q'B)é(z— QB+ B)---£(z+Q'B)

of states of the cells of the colony with center ¢. If £ = ¢.(() then, due to the overlap-free nature of the code, the
value £*(z) is nonvacant only at positions z where ((z) is defined. It is interesting to note that if £ is not the code
of any configuration { then it may happen that in the decoded configuration ¢*(€), the cells will be not exactly at a
distance QB apart. The overlap-free nature of the code still garantees that the distance of cells in ¢*(€) is at least
@B. This situation cannot be helped. Eventually, we will have to legalize these “lllegal” decoded configurations; for
the while, let us just ignore them.

3.3 Block simulations

Suppose that media M) and M; are deterministic cellular automata where M; = CA(Trans;, B;, T;), and ¢ is a block
code with
B, =B, B, =Q@B.

Suppose that the decoding function is as simple as in our Example 3.1: there is an Info track and once the colony is
accepted the decoding function depends only on this part of the information in it.
For each evolution 7 of M;, we can define an evolution n* = ¢*(n) of M» by setting

(3.3) 51 7° (-, 1) = ¢ (n(-,1)).

We will say that the code ¢ is a simulation if for each configuration & of Ma, for the trajectory u;n of M;, such
that 7(-,0,w) = . (€) for almost all w, the random evolution y, 7* is a trajectory of M,. (We do not have to change
p here since the w in 7*(z,,w) is still coming from the same space as the one in 75(z,t,w).)

We can view p. as an encoding of the initial configuration of M, into that of M;. An evolution 5 of M; will be
viewed to have a “good initial condition” (-, 0) if the latter has the form . (£) for some configuration of M. Our
requirements say that from every trajectory of M; with good initial conditions, the simulation decodes a trajectory
of Mg.

Let us show one particular way in which the code ¢ can be a simulation. For this, the function Trans; must
behave in a certain way which we describe here. Assume that

=T Th=UT

for some positive integer U called the work period size. Each cell of M, will go through a period consisting of U
steps in such a way that the Info field will be changed only in the last step of this period. The initial configuration
7(-,0) = @.(£) is chosen in such a way that each cell is at the beginning of its work period (this imposes a condition
on the encoding function ¢.). By the nature of the code, in the initial configuration, cells of M, are grouped into
colonies.

Once started from such an initial configuration, during each work period, each colony, in cooperation with its
two neighbor colonies, does the following. Let us denote by r_,ro, 7 the value in the first 12 bits of the Info track
in the left neighbor colony, in the colony itself and in the right neighbor colony respectively. First, the three colonies
“compute” s = Transs(r—,ro,r4+) where Transy is the transition function or M- and stores it on a memory track.
(We are not interested now in how Trans, manages to perform this computation: just assume that it happens. It
may help understanding how it happens if we think of the possibilities of using some mail, memory and workspace
tracks.) Then, in the last step, s will be copied onto the Info track.

Clearly, if Trans; is like this then our code is a simulation. Such a simulation is called a block simulation.

There are many ways to construct block simulations. Moreover, there is a cellular automaton that can simulate
every other cellular automaton by a block simulation. A transition function Trans is universal if for every other
transition function Trans’ there are Q,U and a block code ¢ such that ¢ is a block simulation of CA(Trans',Q,U)
by CA(Trans,1,1). If Trans is universal then we will call every cellular automaton CA(Trans, B, T') universal.

It is known that there is a universal transition function. This is proved somewhat analogously to the theorem on
the existence of universal Turing machines.

Note that a universal cellular automaton cannot use codes similar to our example 3.1. Indeed, in that example,
the capacity of the cells of M, is at least the binary logarithm of the colony size, since each colony cell contained its
own address within the colony. But if M; is universal then the various simulations in which it participates will have
arbitrarily large colony sizes.

The size Q of the simulating colony will generally be very large also since the latter contains the whole table of
the simulated transition function. There are many special cellular automata Ma, however, whose transition function
can be described by a small program and computed in relatively little space and time (linear in the size s3). The
universal transition function will simulate these with correspondingly small @ and U: We will only deal with such
automata.

3.4 Single-fault-tolerant block simulation

Here, we outline a cellular automaton M that block-simulates a cellular automaton M correctly as long as at most
a single error occurs in a colony work period of size U. The outline is very informal: it is only intended to give some
mental model to refer to.

The automaton M; is not universal, i.e. the automaton M, cannot be chosen arbitrarily. Among others, this is
due to the fact that the address field of a cell of M; will hold its address within its colony. But we will see later that
universality is not needed in this context.

The cells of M; will have, besides the Addr field, also a field Age. If no errors occur then in the i-th step of the
colony work period, each cell will have the number 7 in the field Age. There are also fields called Mail, Info, Wk, Hold,
Prog.

The Info field holds the state of the represented cell of M> in three copies. The Hold field will hold parts of the
final result before it will be, in the last step of the work period, copied into Info. The role of the other fields is clear.

The program will be described from the point of view of a certain colony C. Here is an informal description of
the activities taking place in the first third of the work period.

1. From the three thirds of the Info field, by majority vote, a single string is computed. Let us call it the input
string. This computation, as all others, takes place in the workspace field Wk; the Info field is not affected.
The result is also stored in the workspace.

2. The input strings computed in the two neighbor colonies are shipped in into C and stored in the workspace
separately from each other and the original input string.

3. The workspace field behaves as some kind of universal automaton, and from the three input strings and the
Prog field, computes the string that would be obtained by the transition function of M5 from them. This string
will be copied to the first third of the Hold track.

In the second part of the work period, the same activities will be performed, except that the result will be stored
in the second part of the Hold track. Similarly with the third part of the work period. In a final step, the Hold field
is copied into the Info field.

The computation is coordinated with the help of the Addr and Age fields. It is therefore important that these are
correct. Fortunately, if a single fault changes such a field of a cell then the cell can easily restore it using the Addr
and Age fields of its neighbors. :

It is not hard to see that with such a program (transition rule), if the colony started with “perfect” information
then a single fault will not corrupt more than a third of the colony at the end of the work period. On the other
hand, if two thirds of the colony was correct at the beginning of the colony work period and there is no fault during
the colony work period then the result will be “perfect”.

4 Hierarchy

4.1 General simulations

In its most general form, a simulation of medium M3 by medium M is given by two mappings: a mapping ®* of the
set of evolutions of M, into the set of evolutions of M (the decoding) and a mapping ¢. of the set of configurations
of M> to the set of configurations of M; (the encoding). The following properties are required for each configuration
¢ and each trajectory 7 with starting time 0 and #(-,0) = ¢.(¢):

(a) The evolution ®*(n) is a trajectory of Ma.
(b) @*(m)(-0) =¢.

Our simulations will be invariant with respect to shifts in space-time. For this property, we will have to choose the
cell sizes of the two media M; and M, appropriately, to avoid scaling.

A simulation will be called local, if there is a finite space-time window V* = I x [—u, 0] such that ®*(5)(w,?)
depends only on nfw,t + V*]. Together with the shift-invariance property, the locality property implies that a
simulation is determined by a function defined over Evols(V*). Our simulations will be local unless stated otherwise.

If u = 0 then the configuration 7 (-,) depends only on the configuration 7(-,¢). In this case, the simulation could
be called “memoryless”. For memoryless simulations, the simulation property is idenfical to the one we gave at the
beginning of Subsection 3.3. If u > 0 then the decoding looks back on the whole evolution in the interval [t — wu,).

Our real goal is to find nontrivial simulations between media M; and Ms, especially when these are not deter-
ministic cellular automata. If e.g. M;, M, are probabilistic cellular automata then the simulation property would
mean that whenever we have a trajectory p;n of M; the evolution 7* decoded from 7 would be a trajectory of
Ms. There are hardly any nontrivial examples of this sort since in order to be a trajectory of Ma, the conditional
probabilities of (1) must satisfy certain equations defined by Trans_prob,, while the conditional probabilitiees of
n satisfy equations defined by Trans_prob,.

Simulation between perturbations There is more hope in the case when M; and M, are perturbations of
some deterministic media since in this case, only some inequalities must be satisfied. Qur modest goal of improving
reliability could be this. For some universal transition function Trans,, find Trans;, @, U, c with By = B, B; = BQ,
Ty =T, T, = TU and a block simulation ¢; such that for all € > 0, if &; = €, £2 = ce2 and M; is the perturbation
Ptrb.,(CA(Trans;, B;,T;)) then ¢; is a simulation of M, by M.

The meaning of this would be that our simulation will compute Trans, with a much smaller fault probability ce2,
and this amounts to a kind of error correction. The hope is not unreasonable since in Subsection 3.4, we outlined
a single-fault-tolerant block simulation while the probability of several faults happening during one work period is
only of the order of (QUe)?. '

Trickle-down Let us be sanguine for a moment and assume that our goal can be achieved (though in this form,
it cannot yet); moreover, that we can define a whole sequence M;, Ma, ... of media and a sequence ©1,¢2,... of
simulations such that ¢; is a simulation of M;;; by M;. Such a structure is called an amplifier. If n = 5! is an
evolution of M; then for k£ > 1 we define

(4.1) n° = P 19k-n - @IN.

If My = Ptrbe, (CA(Transi, Qi,Ur)) then we can hope that €x41 is only about (Ukask)z, and that Uy, Qr does
not grow fast (they may even be constant). This is as close as a probabilistic automaton can get to simulating a
deterministic one.

Amplifiers seem to be the generalization a renormalization groups in statistical physics (however, the semigroup
property holds here only in a trivial sense).

When combined with trickle-down (mentioned above in Subsection 3.1), such a sequence of simulations would
solve the problem of remembering a bit. We need to define trickle-down more formally for a simulation ¢ of medium
M, by medium M;. (The completely formal definition is not essentially different.) For an evolution n of M, let 7~
denote the evolution ¢(n) of M. We will say that ¢ has the e-trickle-down property with blocksize @ if for all
trajectories u;n of My, for each pair of sites z1, z2 and time the following holds. Suppose that z; is an element of
the Q-colony with center z3 and 7*(z2,t) is nonvacant; then with conditional probability 1 — ¢, we have

(4.2) n(z1,t).Main_bit = 7" (z2,t).Main_bit.

4.2 Hierarchical codes

Concatenated codes Let us discuss the hierarchical structure arising in an amplifier. If ¢, ¢ are two codes then
@ o9 is defined by (¢ o ¥)«(€) = @u(¥:(£)) and (po)" (¢) = ¥=(¢*(¢)). It is assumed that § and (are here
configurations of the appropriate media, i.e. the cell body sizes are in the corresponding relation.

For example, let My, M2, M3 have cell sizes 1,31, 312 respectively. Let us use the code ¢ from Example 3.1. The
code ¢? = ¢ o @ maps each cell ¢ of medium M3z with body size (31)? into a “supercolony” of 31 x 31 cells of size
1 in M;. Suppose that { = ¢2(€) is a configuration obtained by encoding from a lattice configuration of body size
312 in M. Then ¢ can be broken up into colonies of size 31 around the cells 31i for i € Z. Cell 55 belongs to the
colony with center 62 and has address 8 in it. Therefore the address field of {(55) contains a binary representation
of 8. Its last bit encodes the 8-th bit of the cell 62 of M, represented by this colony. If we read together all 12 bits
represented by the Info fields of the first 12 cells in this colony we get a state (*(62) (we count from 0). The cells
31j for j € Z with states (*(31j) obtained this way are also broken up into colonies. In them, the first 4 bits of
each ¢*(317) form the address and the last bits of the first 12 cells, when put together, give back the state of the
cell represented by this colony. Notice that these 12 bits were really drawn from 317 cells of M;. Even the address
bits in (*(62) come from different cells of the colony with center 62. Therefore cell with state ((55) does not contain
information allowing to conclude that it is cell 55. It only “knows” that it is the 8-th cell within its own colony (with
center 62) but not that its colony has address 17 within its supercolony (with center 0).

This process can be repeated, a code can be concatenated an arbitrary number of times with itself or other codes.
In this way, a hierarchical, i.e. highly nonhomogenous, structure can be defined using cells that have only a small
number of states. ;

Infinite hierarchy We will even need an infinite concatenated code since the the definition of the initial configu-
ration for M in the amplifier depends on all codes ;. What is the meaning of such a code? Suppose that we have a
sequence 1,2, - . . of codes with word sizes Q1,Qs, We will want to concatenate them “backwards”, i.e. in such
a way that from a configuration £ of medium M; with cell body size 1, we can decode the configuration £2 = p1(€%)
of medium M- with cell body size @1, configuration £3 = 3(£?), of M3 with body size @1Q2, etc.

The repeated decoding process is well-defined by our formulas; however, how will we encode anything here? It
seems that we have to begin at infinity. For simplicity, let us assume that all code sizes Q; are odd. There is an
easy solution, if our block codes ; have the following property: for codewords ¢;i(r) = s(0) - --s(Q — 1), the middle
symbol s(Q?}) does not depend on 7. Notice that our example code has this property. Let s; be the common middle
symbol of all codewords of the code ¢;. Let £ be the configuration of M; which has a single nonvacant cell at site 0
in state s;. Let R; = Q1Q2---Qi. Now, define the configurations §; of M; which are nonvacant over integer sites z
in [— R}, R}), as follows: _

& = pra(pas(- - pi-12(85) -+ +))

for i > 1, and £! = 3. Then each configuration in this sequence is an extension, to the left and right, of the previous
one and so they converge to a limit.

Riders The infinite code defined above is not very satisfactory since the result of the encoding does not contain
any information that is not in the codes themselves. To fix this problem let us agree that all cellular automata
considered will have a field Rider. We generalize our code to a two argument function @«(f,r) where r is a symbol of
M3 and f is a string of length @ from some new state space K. For each symbol r € S, and string f = fo...fo-1
with f; € K, the codeword ¢.(f,r) is a string s = 5(0) - - - s(Q — 1) with s(¢) € S, with the property that ps)=r
and s(i).Rider = y*(s(7))-= fi. Such a code will be called a block code with a rider argument. The string f gets a
“ride” symbol-for-symbol on the codeword s. In Example 3.1, the set K could be the set of bit pairs, the field Rider
could be bits 10 and 11 of the 12-bit cell state. The encoding w.(f,r) would be almost the same as ©«(r), except
that bits 10 and 11 of each s() in s = @.(f,r) receive, instead of 0’s, the two bits of f;. The decoding ¢* is the
same, and the decoding v* is simply the reading out of the field Rider from a symbol of M.

Let us call a code ¢.(f,r) with a rider upward compatible if its middle symbol (we still assume that Q is
odd) depends only on the rider f (of course, then it depends only on the middle symbol of f). From now on, all
our codes will be assumed (and constructed) to be upward compatible. Let us resume our attempt to define an
infinite concatenation of codes whose decoding is ¢} o 3 0 ---. Assume that the code @ix(f,) is defined with rider
state space K;. For each i = 1,2,.. ., let us be given a rider configuration y; and let x denote the whole sequence.
Upward compatibility implies that for all configurations £ of M;,, the state ®ix(Xi,£)(0) depends only on the rider
configuration x; and not on the encoded configuration £. Let &} be the configuration of M; which has the single
nonvacant cell at site 0 in this state and

(43) wl*(Xl E) = (Pl"(Xl:E):
Yis(X,€) = Ya-1)(x,0i(xi,€))
Ez' '4’(:‘—1)*(?(:58)-

Configuration &4 is an extension, to the left and right, of £ and so the sequence converges to a limit £&. This limit
is not a trivial infinite code anymore since all the rider configurations x; can be decoded from it via Y7 and 47.

Note that though the configuration £ above is obtained by an infinite process of encoding, there is no infinite
process of decoding yielding a single configuration from it. At the k-th stage of the decoding, we get the configuration
€F and all these configurations have different cell sizes.

It helps to visualize this infinite code if we think of each cell ¢ of a configuration &' as a clerk who has a “main
job”, for which she is paid: to participate in the common task of her colony which is to encode all information
(including the Rider field) of a cell of ¢¥+1. But the state £¥(c) has some free capacity which can be used for some
hobby: this hobby will simply be to store a symbol x;(c) of the i-th rider configuration in her own rider field. Thus,
the only information in the configuration £ contained in the infinite code is the one derivable from the hobbies of
these clerks on various levels. It is a crucial feature of this system that the information that is just hobby on levels
i+ 1 and higher is part of the main information to be encoded on levels i and lower. If therefore, as it will turn
out, our codes lend increasing degree of reliability to the information on higher levels,-the information contained in
the rider strings increases in reliability as we climb higher in the hierarchy. This reliability will be exploited. In the
simplest task, in the construction to remember the field Main_bit, the latter field will be essentially identical to Rider.

4.3 Amplifiers with trickle-down

Suppose that we succeed constructing an amplifier Mj, Mo, ..., ¢1,p2,...such that M is a perturbed medium with
fault probability €x and the simulation ¢; has colony size Qi and the gp-trickle-down property with this colony-size.
Here, both 3", ex and ", €} are less than 0.1. Also, the Main_bit field is the Rider field of the simulations ©k-

Let p,-}ﬂ be a trajectory of M; starting from the initial configuration that is the infinite code described above,
in which 7'(z,0).Mainbit = 0 for all cells 2, and let 7°+! = ©¥(n’). Then p,7* is a trajectory of M. Take a
cell z; of 7, and a time ¢. This cell belongs to some colony with center z, in the simulation 1. Site x5 of M,
belongs to some colony with center z3 in 5, etc. Since Yok €k < 0.1, for some k, the probability will be at least 0.9
that n'(z;,t).Main_bit = 0 for all i > k. From here, with repeated application of the trickle-down property, we can
conclude that the probability is at least 0.8 that 7(z1,t).Main_bit = 0, which will show that the medium M, indeed
remembers Main_bit.

10

4.4 Major difficulties

The idea of a simulation between two perturbed cellular automata is, unfortunately, flawed in the original form: the
mapping defined in the naive way is not a simulation in the strict sense we need. A group of failures can destroy
not only the information but also the organization into colonies in the area where it occurs. This kind of event
cannot therefore be mapped by the simulation into a transient fault unless destroyed colonies “magically recover”.
The recovery is not trivial since “destruction” can also mean replacement with something else that looks locally as
legitimate as healthy neighbor colonies but is incompatible with them. Rather than give up hope let us examine the
"different kinds of disruption that the faults can cause in a block simulation by a perturbed cellular automaton M;.

Let us take as our model the informally described automaton of subsection 3.4. The information in the current
state of a colony can be divided into the following parts:

“information”: an example is the content of the Info track.
“structure”: the Addr and Age tracks.
“program”: the Prog track.

The “structure” does not represent any data for the decoding but is needed for coordinating cooperation of the colony
members. The “program” determines which transition function will be simulated. The “information” determines
what will be in the state of the simulated cell: it is the “stuff” that the colony processes.

Disruptions are of the following kinds (or a combination of these):

(1) Local change in the “information”;

(2) Locally recognizable change in the “structure”;
(3) Program change;

(4) Locally unrecognizable cha.ngg' in “structure”;

A locally recognizable structure change would be a change in the address field. A locally unrecognizable change
would be to erase two neighbor colonies sitting, say, at positions BQ and 2BQ and to put a new colony in the
middle of the gap of size 2BQ obtained this way, at position 1.5BQ (remember that each colony is positioned around
its center). Cells within the two new colonies and the remaining old colonies will be locally consistent with their
neighbors; on the boundary, the cells have no way of deciding whether they belong to a new (and wrong) colony or
an old (and correct) one.

The only kind of disruption whose correction can be attempted along the lines of traditional error-correcting
codes and repetition is the first one: a way of its correction was indicated in Subsection 3.4. The three other kinds
are new and we will deal with them in different ways. i

To fight locally recognizable changes in the structure, we will use destruction and rebuilding. Cells that find
themselves in structural conflict with their neighbors will become vacant. Vacant cells will eventually be restored if
this can be done in a way structurally consistent with their neighbors.

To fight program changes, our solution will be that our simulation will not use any “program”. We will not
lose universality this way: our automata will still be universal, i.e. capable of simulating every other automaton by
appropriate block simulation; but this particular simulation will differ from the others in that the transition rule will
perform it without looking at any program, whenever the local consistency conditions are satisfied.

To fight locally unrecognizable changes, we will “legalize” all the structures brought in this way. In our example,
the decoding function is already defined even for the configuration in which a single colony sits in a gap of size
2BQ. In this decoded configuration, the cell at site 0 is followed by a cell at site 1.5BQ which is followed by cells
at sites 3BQ, 4BQ, etc. Earlier, we could not make any sense of these illegal configurations. We must legalize them
now. Indeed, since they can be eliminated only with their own active participation, we must have rules (trajectory
conditions) applying to them.

Our generalized cellular automaton will be called a robust medium. The generalization of the notion of the
medium does not weaken the original theorem: the fault-tolerant cellular automaton that we eventually build is a
cellular automaton in the old sense. The more general media are only needed to make sense of all the structures that
arise in simulations by a random process. '

11

4.5 Annotated contents

Here is an outline of the whole work.

Defining the general notion of a variable-period (asynchronous) medium, and stating the main results. We connect
this notion of media with discrete-time and continuous-time Markov processes.

Description of a simple block simulation in order to fix concepts.
A robust medium is defined: this is similar to a perturbed cellular automaton, with the following differences:

Cells are not necessarily adjacent to each other.

The dwell period (time between state switchings) of cells is not constant, it has upper and lower bounds.

There is a special set of space-time points called the damage.

The local conditions on trajectories will be expressed in form of axioms.

The Restoration Axiom requires that in a trajectory, damage appear with small probability (¢) and disap-
pear with large probability.

The Computation Axiom requires that the trajectory obey the transition function in the absence of damage.
The transition function can erase and create cells.

The damage is defined in the simulated evolution of a robust medium as follows:

Let M; simulate Ms. We will | say that damage occurs at a certain point z, 1t of space-time in n* if within
a certain space-time window z,t + (—w,w) x [—u, 0] in the past of z,, the damage of 7 cannot be covered
by a small recta.ngle of a certain size. This is saying, essentially, that damage occurs at least “twice”. The
restoration axiom for n with ¢ will then guarantee that the damage in the 51mula.ted medium 7* also satisfies
a restoration axiom with with '~ g2.

The notion of amplifier frame (for robust media) is defined. The Amplifier Lemma is the main lemma: it states
for each frame the existence of an amplifier My, Ms, .. . fitting into it that has the trickle-down property.

The Amplifier Lemma is applied to the proof of the main theorems.

The simulation program (which defines the amplifier) is outlined. It will be given in terms of a number of rules
and conditions (to be satisfied by rules to be defined later).

Rules concerning killing, creation and purge. Due to asynchrony, the main tool of analyzing arbitrary evolutions
will be space-time paths of live cells. We prove the basic lemmas about paths that help trace back the pedigree
of live cells.

The Decay rule. We prove the lemmas stating that once a gap has not been healed for a while then it will eat up a
whole colony.

The crucial Attribution Lemma traces back each non-germ cell to a full colony. This lemma expresses best what
can be called the self-stabilization property.

The Healing Rule and the Healing Lemma, showing how the effect of a small amount of damage will be corrected.
Due to the need to restore some local clock values consistently with the neighbors, the healing rule is rather
elaborate.

The error-correcting computation rules. The parts of the computation axiom not dependent on communication.

The communication rules. These are rather elaborate, due to the need to communicate with not completely reliable
neighbor colonies asynchronously. We finish by proving the rest of the Computation Axiom.

12

References

[1] Piotr Berma1.1' and Janos Simon. Investigations of fault-tolerant networks of computers. In Proc. of the 20-th
Annual ACM Symp. on the Theory of Computing, pages 66 — 77, 1988.

[2] Paula Gonzaga de Sé and Christian Maes. The Gécs-Kurdyumov-Levin Automaton revisited. Journal of
Statistical Physics, 67(3/4):607-622, May 1992. ’

[3] R. L. Dobrushin and S. I. Ortyukov. Upper bound on the redundancy of self-correcting arrangements of unreliable
elements. Problems of Information Transmission, 13(3):201-208, 1977.

[4] Peter Gacs. Reliable computation with cellular automata. Journal of Computer System Science, 32(1):15-78,
February 1986.

[5] Peter Gacs. Self-correcting two-dimensional arrays. In Silvio Micali, editor, Randomness in Computation,
volume 5 of Advances in Computing Research (a scieniific annual), pages 223-326. JAI Press, Greenwich,
Conn., 1989.

[6] Peter Gécs, Georgii L. Kurdyumov, and Leonid A. Levin. One-dimensional homogenuous media dissolving finite
islands. Problems of Inf. Transm., 14(3):92-96, 1978.

[7] Peter Gécs and John Reif. A simple three-dimensional real-time reliable cellular array. Journal of Computer
and System Sciences, 36(2):125-147, April 1988.

[8] Lawrence F. Gray. The positive rates problem for attractive nearest neighbor spin systems on z. Z. Wahrschein-
lichkeitstheorie verw. Gebiete, 61:389-404, 1982.

[9] Lawrence F. Gray. The behavior of processes with statistical mechanical properties. In Percolation Theory and
Ergodic Theory of Infinite Particle Systems, pages 131-167. Springer-Verlag, 1987.

[10] Gene Itkis and Leonid Levin. Fast and lean self-stabilizing asynchronous protocols. In Proc. of the IEEE Symp.
on Foundations of Computer Science, pages 226-239, 1994.

[11) G. L. Kurdyumov. An example of a nonergodic homogenous one-dimensional Tandom medium with positive
transition probabilities. Soviet Mathematical Doklady, 19(1):211-214, 1978.

[12] Thomas M. Liggett. Interacting Particle Systems. Number 276 in Grundlehren der mathematischen Wis-
senschaften. Springer Verlag, New York, 1985.

[13] Nicholas Pippenger. On networks of noisy gates. In Proc. of the 26-th IEEE FOCS Symposium, pages 30-38,
1985.

[14] Andrei L. Toom. Stable and attractive trajectories in multicomponent systems. In R. L. Dobrushin, editor, Mul-
ticomponent Systems, volume 6 of Advances in Probability, pages 549-575. Dekker, New York, 1980. Translation
from Russian.

[15] John von Neumann. Probabilistic logics and the synthesis of reliable organisms from unreliable components. In
C. Shannon and McCarthy, editors, Automata Studies. Princeton University Press, Princeton, NJ., 1956.

[16] Weiguo Wang. An Asynchronous Two-Dimensional Self-Correcting Cellular Automaton. PhD thesis, Boston
University, Boston, MA 02215, 1990. Short version: Proc. 32nd IEEE Symposium on the Foundations of
Computer Science, 1991.

13

L

==

= [3 C

3 —3

— 1

1

Observations on Self-Stabilizing Graph Algorithms
for Anonymous Networks*

(Extended Abstract)

Sandeep K. Shukla Daniel J. Rosenkrantz S. S. Ravi

Department of Computer Science
University at Albany - State University of New York
Albany, NY 12222

Abstract

We investigate the existence of deterministic uniform self-stabilizing algorithms (DUSSAs) for a number of
problems on anonymous networks. This investigation is carried out under three models of parallelism, namely
central daemon, restricted parallelism, and maximal parallelism. We show that many problems, including
finding a maximum matching in an arbitrary graph and 2-coloring an odd degree bipartite graph, do not have
DUSSAs even under the most restricted model, namely central daemon. We also observe that techniques due to
Dana Angluin lead to general results that establish the non-existence of DUSSAs for a large collection of graph
problems under any of the parallelism models. The problems in this collection include determining the parity
of the number of nodes in a graph, determining the diameter of the graph, determining the eccentricities of the
vertices of a graph and membership testing for various graph classes (for example, planar graphs, chordal graphs,
and interval graphs).

On the positive side, we present DUSSAs for 2-coloring odd degree complete bipartite graphs, 2-coloring trees
and finding maximal independent sets in general graphs. We also present randomized USSAs under maximal
parallelism for some problems.

1 Introduction

The concept of self-stabilization, introduced by Dijkstra [Dij74], has been of considerable interest to reséarchers
in the area of fault-tolerant distributed systems. Self-stabilization provides a uniform approach to fault-tolerance
[Sch93]. Due to transient faults or arbitrary initialization, a distributed system may enter an undesirable or illegit-
imate global state [Dij74]. In such situations, a self-stabilizing algorithm (protocol) enables the system to recover
to a legitimate global state in a finite amount of time. Self-stabilizing algorithms have been developed for a number
of problems (see [Sch93, EK89] and the references cited therein).

In this paper we study self-stabilizing algorithms for graph problems on anonymous networks. A graph problem
is specified by an undirected graph G and a requirement. Following previous work in this area (see for example,
[GK93, KPBG94]), we assume that the distributed system has a processor for each node of the input graph; there is
a communication link between two processors if and only if the corresponding nodes are adjacent in the input graph.
The problem is to design a distributed algorithm such that when the system stabilizes, the resulting global state

satisfies the specified requirement. As an example, consider the problem of 9-coloring an even ring. Here the graph is

1Research Supported by NSF Grants CCR-90-06396 and CCR-94-06611. Email addresses: {sandeep, djr, ravi}@cs.albany.edu

an unoriented ring with an even number of nodes. The requirement is that all the nodes of the ring are colored either
1 or 0 and no two adjacent nodes have the same color. We are required to design a distributed algorithm that will
restore the system to a state where the colors assigned to the nodes satisfy the 2-coloring requirement. Moreover,
the algorithm must enable the system to reach such a state from any initial state.

We restrict our attention to uniform algorithms, where each processor in the distributed system executes
the same program. Uniform self-stabilizing algorithms (USSAs) are known for some problems including 6-coloring
planar graphs [GK93], finding centers and medians for trees [KPBG94], 2-coloring certain rings and chains [SRR94],
orienting odd-length rings [Hoe94], and leader election in rings of prime size [Hua93}. For some problems, it has been
shown [Ang80, BP89, 1J93] that deterministic uniform self-stabilizing algorithms (DUSSAs) are impossible because
of the difficulties encountered in deterministic symmetry breaking. For several such problems, researchers have
presented randomized algorithms that self-stabilize with high probability; see for example, [Her90, 1J93, SRR94].

It is generally desirable to develop DUSSAs for problems on anonymous networks rather than non-uniform
algorithms for ID-based networks. (See Section 2.1 for an explanation.) Unfortunately, for anonymous networks,
DUSSAs are impossible even for very simple problems (e.g., 2-coloring an anonymous network [SRR94]). Therefore,
it is of interest to investigate whether there are DUSSAs for problems on special classes of anonymous networks.

We consider three models for selecting the set of processors which will execute during a time step. These
three processor selection models are central daemon [Dij74] (where a central scheduler selects one of the enabled
processors at each step), restricted parallelism (where there is a specified restriction on the set of processors
that may execute at each step), and maximal parallelism (where all enabled processors may execute at each
step). A particular form of restricted parallelism, namely neighborhood-restriction, has the non-interfering property
defined in [BGW89]. Also, maximal parallelism is the same as the synchronous model used in [BGM89, HWT94].
For all the problems considered in this paper, it is straightforward to show impossibility results under maximal
parallelism. Therefore, we focus on DUSSAs under central daemon and restricted parallelism models. We then use
a randomization strategy presented in [SRR94] to obtain randomized uniform self-stabilizing algorithms (RUSSAs)
which self-stabilize with probability 1 under the maximal parallelism model. For some problems, we observe that

DUSSAs are impossible under any of the three models. Our results are summarized below.

1. We show that there is no DUSSA for 2-coloring an odd-degree bipartite graph.- ‘We present DUSSAs for 2-
coloring two subclasses of bipartite graphs, namely odd-degree complete bipartite graphs and trees. The iDUSSA
for 2-coloring trees uses the center finding algorithm for trees given in [KPBG94] and the fair composition
technique given in [DIM93]. We prove the correctness of these algorithms under central daemon and restricted
parallelism models. It is easy to show that there is no DUSSA for these problems under the maximal parallelism

model. So, we use the correctness under restricted parallelism to obtain RUSSAs for these problems.

2. We show that there is no DUSSA for finding a mazimum matching in an arbitrary graph even under the central

daemon model.

3. We present a DUSSA for finding maximal independent sets in arbitrary graphs. We prove the correctness of the
algorithm under central daemon and restricted parallelism models. It is easy to show that there is no DUSSA
for this problem under the maximum parallelism model. The correctness of the algorithm under a restricted

parallelism model enables us to obtain a RUSSA for this problem under the maximal parallelism model.

(precondition)— (action);
D .

(precondition)— (action);
m} :
{precondition)— (action);

Figure 1: Syntax of a program at any node

4. It is easy to show that under the maximal parallelism model, there is no DUSSA for producing a valid coloring
of a planar graph. A DUSSA for 6-coloring planar graphs under the central daemon model can be derived from
an algorithm in [GK93]. We observe the correctness of this algorithm under a restricted parallelism model and

use this observation to develop a RUSSA for the problem.

5. We observe that techniques due to Angluin [Ang80] lead to general results that establish the non-existence of
DUSSAs for a large collection of graph problems under any of the parallelism models. The problems in this
collection include finding the parity of the number of nodes in a graph, finding the diameter of a graph, finding
the eccentricities of the vertices of a graph and membership testing for various graph classes (for example,

planar graphs, chordal graphs and interval graphs).

The remainder of this paper is —organized as follows. In Section 2 we elaborate -on our models for distributed
systems. Section 3 addresses the coloring problems mentioned above. Section 4 discusses the impossibility result
for maximum matching. Section 5 presents our maximal independent set algorithm. In Section 6 we discuss general

results that establish the non-existence of DUSSAs for a large collection of graph problems.

2 Preliminary Definitions
2.1 Model of Distributed System

We model a distributed system as a network of processes or processors. The network is represented as a graph whose
nodes represent the processors and whose edges represent communication or logical links. Henceforth we shall use
the words ‘processor’ and ‘node’ interchangeably.

Since only uniform algorithms are considered in this paper, we describe a distributed algorithm by specifying the
program run on a typical processor say, P;. The syntax of the program executed by each node is as shown in Figure
1. Following [Dij74], each statement is referred to as a rule. For example, the first statement is Rule 1, and so on.

The semantics of such a notation is that whenever a processor executes, it selects the action corresponding to a
rule whose precondition (or guard) evaluates to true. However, if two or more of the preconditions are true, then
one of them is chosen nondeterministically. A processor is said to be enabled if at least one of the preconditions is
true; otherwise, the processor is disabled.

The preconditions are Boolean functions of the state of a processor and the states of its neighbors. If all the
preconditions can be evaluated deterministically, then we say that the algorithm is deterministic. If the value of

a precondition depends on the outcome of a random experiment (e.g. generating a random number), then we say

that the algorithm is randomized. In an adversary oriented view of randomized algorithms, this definition might
seem weak. If the adversary does not favor the preconditions in any of the nodes then it will not activate any of the
processors. However, we randomize by making each processor generate a random number in {0, 1} and then choosing
all the processors that generated a 1 for execution. The probability that no processor will execute even though some
are enabled is very low. Thus, the adversary (i.e., the scheduler) is not strong enough to prevent stabilization with
high probability.

It is assumed that each processor has knowledge of its neighbors and this information is not corrupted even in the
presence of transient errors. This assumption is not unreasonable because the neighbor information can be hardwired.
We also assume that reading of the states of the neighbors is atomic. The execution of the action corresponding to
the selected statement is also assumed to be atomic. In some literature this has been referred to as the state-based
model as opposed to the link-register model [IJ93]. The state-based model is used by Dijkstra in [Dij74].

As in [SRR94] we consider three different kinds of adversaries, namely central daemon, distributed daemon
and a new kind of adversary. Under the central daemon model, a central scheduler schedules one processor in
every step. This model is used in [Dij74]. Under the maximal parallelism model, at any time step, all the enabled
processors may execute their actions in parallel. The restricted parallelism model [SRR94] requires that only a certain
proper subset of all the enabled processors may execute at any time step. It is difficult to implement this model
in practice. However, we introduced this model for theoretical reasons. In [SRR94] we considered two varieties of
restricted parallelism, namely pairing restricted parallelism (where, no pair of nodes which are adjacent can execute
together) and subset restricted parallelism (where if more than one processors are enabled, any proper subset set of
all enabled processors can execute together, but not all of them). The pairing restriction has the non-interfering
property [BGW89]. We showed that starting from a DUSSA under a suitable restricted parallelism model, it is
possible to obtain an RUSSA which stabilizes with probability 1 under the maximal parallelism model.

All of our results are for anonymous networks, where the processors do not have any identification numbers. It
is also assumed that the processors in the network do not have any knowledge regarding the number of nodes in the
network. In our correctness proofs, we refer to the processors by numbers, but that is just for notational convenience.
In distributed systems where processors have unique identification numbers, it is often easier to design distributed
algorithms for many problems. (However, this is not always the case [IR81].) Designing distributed algorithms for
anonymous networks is more important for the following reasons. Since the number of nodes in the network is not
known a priori, the memory required for storing the unique ID is not known. If there is an a priori bound on the
number of nodes in the network, we cannot allow arbitrary dynamic addition of nodes to the system. However, if
an arbitrary growﬁh in the number of nodes must be accommodated, it must be possible to dynamically increase the
space needed for storing the IDs. .

The graph theoretic definitions used in this paper can be found in [Har69, Gol80].

2.2 Nature of Impossibility Results
Two types of impossibility results concerning DUSSAs have appeared in the literature.

1. There is no DUSSA for a problem even under the weakest computation model, namely central daemon. Exam-
ples of such problems include mutual exclusion in a bidirectional token ring of composite size [Dij74, BP89],
anonymous leader election [Ang80], constructing a spanning tree of an anonymous connected graph [Ang80],

2-coloring an anonymous bidirectional even ring [SRR94], and 2-coloring an anonymous bipartite graph (this

4

paper). For these problems, the randomization strategy of [SRR94] cannot be used to obtain an RUSSA under
maximal parallelism. Several problem-specific randomization techniques have been developed by various re-
searchers. For example, Herman gave a randomized self-stabilizing mutual exclusion for an odd size token ring
that self-stabilizes with probability 1 [Her90]. In [SRR94] we obtained a 2-coloring algorithm for even rings
as a corollary of Herman’s result. Other researchers have developed randomized algorithms for leader election
[DIM91] and spanning tree construction [AK93].

9. There is a DUSSA for a problem under weaker models such as central daemon and some form of restricted
parallelism, but there is no DUSSA for the problem under maximal parallelism. Examples of such problems
include 2-coloring of an anonymous unoriented even chain and 3-coloring an anonymous bidirectional ring
[SRR94]. In this paper, we point out several additional problems in this category; for example, finding a
maximal independent set of an anonymous network, 2-coloring an anonymous odd-degree complete bipartite
graph, and obtaining a valid coloring of an anonymous planar graph. In these cases, RUSSAs under maximal
parallelism can be obtained using the technique of [SRR94] if a DUSSA can be designed under a suitable

restricted parallelism model.

2.3 Techniques Used in Proving Impossibility Results

The impossibility results presented in this paper are based on two types of arguments. One type of argument relies on
the impossibility of symmetry breaking. The second type of argument is based on covering relations between graphs,
as introduced in [Ang80]. In both types of arguments, we also rely on the fact that a self-stabilizing algorithm must
enable the system to reach a Iegitim'ate state from an arbitrary initial state.

In arguments based on symmetry breaking, we begin with a symmetric initialization of the system and show that
there is an adversarial scheduling strategy that prevents the algorithm from breaking the symmetry. In arguments
based on covering relations, we show two topologies such that if an algorithm achieves stabilization for one topology,
it cannot achieve stabilization for the other topology. Here also, we specify suitable initial states, say S1 and Ss, for
the two topologies. We then argue that if the algorithm achieves stabilization for the first topology starting from
state S;, then there is an adversarial scheduling strategy that prevents the algorithm from achieving stabilization for
the second topology starting from state S. :

We note that because self-stabilization requires an algorithm to bring a system to a legitimate state startmg from
an arbitrary initial state, the impossibility proofs here are much simpler. The impossibility proofs for distributed

algorithms given in [Ang80] involve much deeper arguments as they do not rely on arbitrary initialization.

3 Coloring Results
3.1 2-Coloring Bipartite Graphs
3.1.1 Impossibility result for Odd Degree Bipartite Graphs

In [SRR94] we proved the impossibility of DUSSA for 2-coloring an arbitrary anonymous even ring under all the
parallelism models. It immediately follows that there is no 2-coloring DUSSA for arbitrary anonymous bipartite
graphs. Therefore, it is of interest to identify subclasses of bipartite graphs for which DUSSAs may be designed.

Since the general impossibility result depended on even rings (which are even-degree bipartite graphs), it might seem

e
10

Figure 2: The initial configuration of the odd-degree bipartite graph in the proof of Proposition 3.1

that for the class of odd-degree bipartite graphs, DUSSAs may exist. However, the following proposition shows that

such is not the case.

Proposition 3.1 There is no DUSSA even under the central daemon model for 2-coloring an arbitrary odd-degree

bipartite graph.

Proof: Consider the anonymous_'odd-degree bipartite graph as shown in Figure-2. We denote the Processors
by numbers for notational convenience. (They are not available to the algorithm.) Let us partition the nodes of
the graph into six disjoint classes namely, {(1,4),(2,5),(3,6), (7,10), (8, 11),(9,12)}. Our choice of these classes is

motivated by the following properties of these classes.

1. No two nodes in the same class are adjacent to each other. Hence, if a node changes its state, it does not have

any immediate impact on the other node in its class.
2. No two nodes in the same class have a common neighbor.
3. If (p1,p2) is a class then either both p; and p, have three neighbors or both have one neighbor only.
4. For any class (p1,p2), the classes that contain neighbors of p; also contain the neighbors of p,.

Now assume that there is a DUSSA for 2-coloring any odd degree bipartite graph. For the initialization shown in
Figure 2 (states being indicated by letters a,b,c,e,f,g not necessarily all distinct), the members of the same class have
the same initial state. However, in a valid 2-coloring of this graph, the members of the same class cannot have the
same color. As a result, the initial state shown in Figure 2 is not a valid 2-coloring.

Now consider a central daemon adversary which schedules two nodes in the same class in succession all the time.
Notice that by properties 3, 4 and 5 above, a member of a class is enabled, if and only if the other member is also
enabled at the beginning and after an even number of steps. As a result, such an adversarial schedule is possible.
Further in such a schedule, the members of the same class have the same state after an even number of steps. Notice,
that such a fair schedule exists. Thus there is an infinite computation in which after an even number of steps (for

each even number), the members of the same class are in the same state. By property 6, that implies under such an

1. (Color = MajorityColor) — (Color := Color);

Figure 3: Program for any processor in Algorithm 0dd-Complete

adversarial scheduling, the graph will never be 2-colored. O

Proposition 3.1 raises the question of whether there are subclasses of bipartite graphs for which DUSSAs can
be designed under the central daemon model. We now present two such subclasses, namely odd-degree complete

bipartite graphs and trees.

3.1.2 Coloring Complete Odd-degree Bipartite Graphs

In Figure 3 we present a DUSSA for 2-coloring a complete odd degree bipartite graph, denoted by Ky, 4,, Where di,
d» are odd positive integers. In the following discussion, we refer to the two disjoint subsets of nodes in the given
complete bipartite graphs as the two sides. The algorithm is simple and contains only one rule. Each processor
contains a one bit variable called Color which takes values from {0,1}. MajorityColor is a function that each
processor computes in its atomic step by looking at the Color of all its neighbors; if the number of neighbors with
Color 0 is more than the number of neighbors with Coolor 1, then the Ma jorityColor is 0 otherwise it is 1. Note that
each node has an odd number of neighbors and thus MajorityColor is well defined at each node. Since the graph
is a complete bipartite graph Kg, 4,, when a node on one side computes MajorityColor, it computes the majority
color on the other side. The correctness of the algorithm is an immediate consequence of the following two lemmas

whose proofs are straightforward.

Lemma 3.2 If the majority color on the two sides are complementary to each other, then under mazimal parallelism

Algorithm (jdd-Complete self-stabilizes with the corresponding colors on each side. O

Lemma 3.3 If the majority colors on both sides are the same, then under central daemon they will eventually differ
by the ezecution of Algorithm Odd-Complete. O

Lemma 3.2 and Lemma 3.3 together show that starting from an arbitrary initial coloring of an odd degree complete
bipartite graph, the algorithm self-stabilizes with a valid 2-coloring under the central daemon model.

It can be shown that Algorithm Qdd-Complete also stabilizes under the following restricted parallelism model:
No two adjacent nodes may execute together during any step. We call this restriction the pairing restriction
[SRR94]. The identification of this restriction enables us to randomize the algorithm. Each processor generates a
random number r such that Prob(r = 0) = p and Prob(r = 1) = 1—p, and decides to execute if it generates 1.
Then under maximal parallelism the probability that all the nodes on one side of Ka, 4, generate 1 and all the nodes
on the other side generates 0 is given by f = ph(1—p)% +p¥(1- p)%. The probability that this event does not
happen in a maximal parallel step is (1 — /), which is less than 1. As a result, the probability that in k subsequent
steps this event does not happen is (1 — B)¥ which decreases towards 0 as k increases. Thus the probability that
eventually this restriction is imposed at least once tends to 1. The majority color on both sides may remain the same
until the time when this restricted parallelism gets imposed; once the restriction is imposed the majority on the two

sides are different. Then by Lemma 3.2, the system self stabilizes with valid a 2-coloring. Therefore we conclude:

(Fiene((R(I) = k) A color(l) = color) — (color := color);

Figure 4: Program for any processor in Algorithm Tree-color

Proposition 3.4 Under mazimal parallelism there is an RUSSA that self-stabilizingly 2-colors a complete odd-degree
bipartite graph with probability 1. O.

3.1.3 2-Coloring Trees

Trees are a subclass of bipartite graphs for which it is possible to design a 2-coloring DUSSA under central daemon.
We use a fair composition [DIM93] of the DUSSA (called algorithm Tree-color) in Figure 4 with the DUSSA for
center finding given in [KPBG94]. Henceforth, we refer to the center finding algorithm in [KPBG94] as Algorithm
KPBG. In Algorithm KPBG each node of the tree has a variable k, and for each node v, the set of values of h
corresponding to all its neighbors is denoted by Nj(v). We denote the maximum value in Ny(v) by maz Nj.

When Algorithm KPBG stabilizes, each center node has h > maxz Nj. When there are two centers, their h values
satisfy the condition h = maz Nj. For all other nodes h < maxz N;. We assume that each node contains a one bit
variable called color. A fair composition of algorithm Tree-color with Algorithm KPBG will guarantee that after the
composite algorithm stabilizes the tree is properly 2-colored.

It can be shown that a fair composition of KPBG and Algorithm Tree-color shown in Figure 4 will self stabilize
with a valid 2-coloring of the tree.. In the description of the algorithm Tree-color-in Figure 4, we use symbol [
to denote the port numbers through which a neighbor may be connected. Since we are designing algorithms for
anonymous networks, no node has any globally known identifiers. However, each node can distinguish locally, the
port numbers through which its neighbors are connected. Also Ne denotes the set of all port numbers through which
some neighbor is connected.

We now informally explain how the fair composition of KPBG and algorithm Tree-color achieves self-stabilization.
After KPBG stabilizes, there are one or two nodes which are centers. These nodes have the property that their A
values satisfy the condition Vieneh > h(I). If there are two centers then they will have the same h value. By the rule
in Figure 4, if there are two centers (they must be adjacent [Har69]) which have the same color, whichever executes
first under the central daemon model, will complement its color. subsequently, the immediate neighbors of a center
change their colors to the complement of the corresponding center’s color. Then the ones which are at a distance
of two from the cénters set their colors correctly and so on. A proof that when the fair composition stabilizes, the
coloring is a valid 2-coloring of the tree can be given using induction on the distances of the nodes from the centers.

This proof is omitted here due to space limitations.

Proposition 3.5 A fair composition of KPBG and Tree-color self-stabilizes with a valid two coloring of the tree

under the central daemon model. O

Under maximal parallelism, the above algorithm may not self-stabilize. Consider the following scenario. The two
centers of the tree have the same color and all the processors are executing together under maximal parallelism. The
two centers will never have different colors under such a scenario. However, if we apply our randomization strategy,

so that each node executes with probability p < 1, the probability that the two center nodes both execute together

or abstain from executing during a step is p* + (1 — p)? which is less than 1. Thus the probability that their colors
remain the same after k steps is given by (p* + (1 — p)?)¥. This quantity decreases with k and tends to 0. Thus with
probability 1, the two centers eventually complement their colors and the algorithm self-stabilizes subsequently. We

thus conclude:

Proposition 3.6 There is an RUSSA obtainable from the DUSSA under central daemon for the 2-coloring of a tree
which self-stabilizes with probability 1. O

3.2 6-Coloring Planar Graphs

It is easy to see that there is no DUSSA for producing a valid coloring of an anonymous planar graph under maximal
parallelism. In [GK93], a DUSSA for 6-coloring of planar graphs under the central daemon model has been presented.
The algorithm presented there has two phases. In one phase, the edges of the graph are directed so that no node has
out-degree more than 5. The second phase 6-colors the directed graph that results after the first phase stabilizes.
They use a fair composition [DIM93] of the two phases to obtain a DUSSA for the 6-coloring problem. In the first
phase, unique identifiers for the nodes are used to break symmetry. However, in a proof of correctness (attributed to
J. Misra in [GK93]) it is noted that it is possible to carry out this phase without assuming unique identifiers. The
second phase does not use node identifiers.

It can be shown that once the edge directions as described above are achieved, the algorithm will stabilize with
a valid 6-coloring under a neighborhood-restricted (where a node executes if and only if none of its neighbors
execute) parallelism. Then as described in the context of maximal independent set (see Section 5), it is possible to

devise an RUSSA for the problem under maximal parallelism.

Proposition 3.7 There is an RUSSA for 6-coloring anonymous planar graphs under mazimal parallelism. O

4 Impossibility of Self-Stabilizing Maximum Matching

In this section we consider the problem of developing DUSSAs for finding a maximum matching for arbitrary anony-

mous networks.

Definition 4.1 A matching in a graph G is a set of edges M C E such that no two edges in M are adjacent. A
matching M is ¢ maximum matching if M has the highest cardinality among all the possible matchings in G.

The following proposition proves that there is no DUSSA for the maximum matching problem.

Proposition 4.2 There is no DUSSA under the ceniral daemon model for finding a mazimum matching in an

arbitrary anonymous network.

Proof sketch: In [SRR94] we proved that there is no DUSSA for 2-coloring a bidirectional anonymous even ring.
Suppose there is a DUSSA for finding a maximum matching for an arbitrary anonymous network. We can use the
DUSSA to 2-color any even ring self-stabilizingly as follows. In an even ring of size 2n, the size of the maximum
matching is 7. (Such a matching consists of every other edge in the ring.) We run a fair composition of the DUSSA

for maximum matching and the following algorithm. A node can find whether it is at the tail or the head of a
' matched edge (recall that the ring is directed). Each tail node chooses color 0 and each head node chooses color 1.
Tt is easy to see that fair the composition technique will guarantee that this will self-stabilizingly produce a valid

2-coloring of any even ring, contradicting the impossibility result proved in [SRR94]. O

1. (AlliZero A Ind = 0) — (Ind := 1);
0 i
2. {not(AllZero) AInd = 1)— (Ind := 0);

Figure 5: Program for any processor in Algorithm MaxInd

5 Self-Stabilizing Maximal Independent Set

Definition 5.1 Given an undirected graph G(V,E), an independent set of G is a subset V' of nodes such that
there is no edge between any pair of nodes in V'. An independent set V' is maximal if no proper superset of V' is

also an independent set.

In this section we consider the problem of developing a DUSSA for constructing a maximal independent set
of an anonymous network. In other words, we want to develop a DUSSA such that when the system stabilizes, a
variable in each processor indicates whether that processor is in the constructed maximal independent set or not. For
that purpose we assume that each processor maintains a one bit variable Ind that takes on values from {0,1}. After
stabilization, if a processor finds that its Ind = 1 then it is in the constructed maximal independent set, otherwise
not.

First we note the following impossibility result under maximal parallelism. This can be proven by using the ring

C3 with suitable symmetric initialization.

Proposition 5.2 There is no DUSSA for the mazimal independent set problem for arbitrary anonymous networks

under the mazimal parallelism model. O

Our DUSSA for this problem under central daemon is shown in Figure 5. The-algorithm uses the predicate
AllZero(v) = Vreneighbors(v)(Ind(z) = 0). For a node v, AllZero is true if currently none of its neighbors are in the
maximal independent set. Although the processors do not have unique identifiers, we use Ind(v) or AllZero(v) etc.
for notational convenience.

Now we prove that this algorithm MaxInd stabilizes under central daemon and when it stabilizes (i.e., when all

the processors are disabled) it constructs a mazimal independent set.

Lemma 5.3 Under the central daemon model, if a processor ezecutes Rule 1 of the algorithm MazInd, it will be

permanently disabled and all its neighbors will also be permanently disabled.

Proof: A processor P can execute Rule 1 only if all its neighbors have Ind = 0 (otherwise AllZero(P) would not
be true). When P sets its Ind to 1, all of its neighbors have not(AllZero) true but since none of them has Ind = 1
they all are disabled. Since all the neighbors get disabled, they cannot change their Ind value any more, thus P also

cannot have its guard true ever again. O

Lemma 5.4 Algorithm MazInd stabilizes in O(n) steps under the ceniral deemon model, where n is the number of

processors in the network.

Proof: By Lemma 5.3, if a processor executes Rule 1 then it is permanently disabled. If a processor executes Rule 2,

then its Ind becomes 0. So the only rule that it might execute again is Rule 1. But by Lemma 5.3, if it executes rule

10

1 again, it will be permanently disabled. Thus each node may execute at most twice. Hence the maximum number

of steps needed for the algorithm to stabilize is 2n. O

Using the above lemma, it can be shown that when MaxInd stabilizes (i.e., none the processors is enabled) a

mazimal independent set is constructed. The proof is omitted due to space limitations.

Lemma 5.5 When the guards of all the rules of Algorithm Maz-Ind are false for each processor then the processors

with Ind = 1 form a mazimal independent set for the given network. O

Proposition 5.6 Algorithm MazInd is self-stabilizing and constructs a mazimal independent set for any arbitrary

anonymous network in O(n) steps under the ceniral daemon model.

Now we identify the following restriction on parallelism which will allow the same algorithm to self-stabilize.
Suppose we impose a restriction that in each step, there is at least one node which executes with none of its
neighbors executing (we call it a neighborhood-restriction) then the following proposition shows that MaxInd

will self-stabilize under this restricted model of parallelism.

Proposition 5.7 Under neighborhood-restricted parallelism, Algorithm MazInd self-stabilizes with a mazimal

independent set for an arbitrary anonymous network.?

Proof sketch: Let us define two predicates on the nodes of the graph. For any node v in the graph let

Strong,(v) = Ind(”) = 1AV1:aEneighbora(v)Ind(u) =0
Strongo(v) = Ind(v) =0A ueneighbors(v)Sirong: (u)

Informally a node is a Strong; node at a given time if its Ind is 1 and all its neighbors have their Ind value as 0.
A node is a Strongo node if its Ind value is 0 and at least one of its neighbor is a Strong; node. After a maximal
independent set is constructed, each node is either a Strong; node or a Strongp node.

In neighborhood-restricted parallelism, the scheduler chooses at least one neighborhood around a node in each
step such that the node executes and its neighbors do not execute. If the scheduler chooses node v at a particular
step then we call that node blessed for that step. When a node becomes blessed, if it executes Rule 1, then it
becomes permanently disabled and becomes a Strong; node and all its neighbors become Strongo nodes. However,
if it executes Rule 2, then it may need to be blessed again in a subsequent step unless one of its neighbor is already
a Strong, node, or one of its neighbors become a Strong; node. But if it becomes blessed again then it executes
Rule 1 and never executes again. Thus, each node needs to be blessed at most twice for self-stabilization. Given
a fair neighborhood-restriction scheduler, each enabled node will be blessed twice if necessary, and the system will
self-stabilize. O

Proposition 5.7 enables us to use randomization under maximal parallelism to implicitly implement such a sched-
uler. Suppose we provide in each processor a random number generator. Each time a processor wants to execute,
it produces a random number 7 in {0,1} and if the number is 1 then it executes. Let Prob(r = 1) = p and

Prob(r = 0) = 1 — p. Consider an enabled node v of degree d. The probability that at a maximal parallel step, v

2Neighborhood restriction implies non-interference as defined in [BGW89)]. Hence, any parallel execution can be serialized and this
proves this proposition directly. However, the proof we give is helpful in understanding how the randomization works.

11

generates random number 1 and all its enabled neighbors generate 0 is at least 8 = p(1 — p)?. This is a lower bound
on the probability that in a maximal parallel step, an enabled node v is blessed. Thus the probability that it is not
blessed in a maximal parallel step is at most (1 —). A weak node v will become a Strong node, if it is blessed at
most twice. The probability that in & subsequent maximal parallel steps in which it is enabled but remains weak
(i-e.,it does not become blessed twice) is at most (1—8)* +kB(1—B)*~! = (1-p)*~1(1+(k—1)8). As k increases
this quantity decreases towards 0. So the probability that the node v becomes a strong node approaches 1 as the
number of parallel steps increases.

If the algorithm does not self-stabilize, then there must be one node that executes infinitely often. But if that
node ever becomes a Strong node then it cannot execute infinitely often. But as argued above, the probability that
it does not become a strong node decreases with the increase in the number of steps. Thus the probability that there

is no infinite execution increases towards one with increasing number of steps. We thus conclude:

Proposition 5.8 There is an RUSSA for the mazimal independent set problem under the mazimal parallelism model
which self-stabilizes with probability 1. O

6 Impossibility Results

In Section 2, we mentioned two kinds of impossibility results for DUSSAs for anonymous networks. Impossibilities
under maximal parallelism are easier to establish because maximal parallelism is a stronger adversary. Such impos-
sibility results are established by finding a graph and a suitable illegitimate initial state such that on that graph, no
deterministic algorithm can take the system to a legitimate state. In previous sections, we showed impossibilities of
existence of DUSSAs under maximal parallelism in this manner.

Impossibility results under weaker adversaries such as central daemon allow us to reach stronger conclusions about
the difficulty of self-stabilization for a problem. In [Ang80], a number of techniques fc;r proving the nonexistence of
deterministic distributed algorithms for various graph problems are presented. Although [Ang80] does not mention
“self-stabilization”, most of the proof techniques are applicable in the context of self-stabilization more easily. In
[Ang80], the impossibility of leader election and specific graph property recognition problems are presented using
graph theoretic methods. The main proofs in [Ang80] involve deeper ideas because impossibility results for general
distributed algorithms cannot rely on arbitrary initialization. Due to their generality, these proof techniques.can be
readily applied in the context of self-stabilization to obtain impossibility results in an easy manner. We present two
such results here.

A predicate P on natural numbers is nontrivial if there are two natural numbers i and J such that P(2) is true
and P(j) is false. Examples of such predicates are P(n) = n is even, or P(n) =n > k for some fixed k, etc.
Suppose we want a DUSSA for a problem of the following kind: A network of processors should decide if the number
of nodes in the graph satisfies property P. For example, suppose each node wants to know if the number nodes
in the graph is odd or even, and accordingly set a flag to 0 or 1. We call this problem the self-stabilizing parity
determination problem for general graphs. For any such property P of the number of nodes of the graph, we
call the corresponding problem the self-stabilizing P-determination problem. Our proof of the following proposition

illustrates a proof technique in [Ang80].

Proposition 6.1 Let P be a nontrivial predicate on natural numbers. Then there is no DUSSA for the P-determination

problem for general networks even under the central daemon model.

12

Proof sketch: Suppose P(i) is true and P(j) is false. Consider the ring C of size and the ring C; of size
j. The P determination DUSSA (if one exists) should stabilize in both the rings with the flags at the nodes set
to 1in C;, and to 0 in C;. Now consider the ring of size Cisj. Consider an arbitrary initial state of Cj and a
corresponding computation sequence under a central daemon. We can now construct a suitable initial state for Ci.;
and an adversarial schedilling strategy under central daemon such that after stabilization, the flags at the nodes of
Cix; will be set to 1. By considering an arbitrary initial state of C;j and the corresponding computation sequence in
C;, we can construct a suitable initial state and another adversarial schedule such that Ci.; will stabilize with all
flags set to 0. This shows that under two distinct initial states, under adversarial scheduling by the central daemon,
the same size ring stabilizes with contradictory decisions about its size. O.

Proposition 6.1 shows that there is no DUSSA under the central daemon model which determines the parity of
the size of the graph, for testing whether the size is greater than some fixed integer k, etc.

Another corollary of the results in [Ang80] concerns the recognition of graph properties. Suppose 7 is a predicate
on graphs. Examples of such predicates are G is bipartite, G is an interval graph, G is a chordal graph etc. (See
[Gol80) for definitions of these graph properties.)

Given any graph property 7, we call the corresponding self-stabilizing problems the 7-determination problem.

Proposition 6.2 Let T be a predicate on graphs. Suppose there are two rings of size i and ki such that T(C;) is
true and T(Cy;) is false. Then there is no DUSSA for deciding the property T for general network even under central

daemon.

Proof sketch: The proof involves the construction of a suitable initial state in Cpi and an adversarial schedule for
it from an arbitrary state and a corresponding computation to stabilization in C;. It can be shown that in both Cj
and Ci; the system stabilizes with the same decision. O

Examples of T-determination problems for which Proposition 6.2 applies are the following: determining whether
a graph is bipartite (Cs is not bipartite but Cs is bipartite), determining whether a graph is an interval graph
(C3 is an interval graph but Ce is not), determining whether a graph is chordal (Cs is chordal but Cj is not) and
determining whether a graph is complete (C3 is complete but Cj is not) etc.

From the above proposition, we can derive corollaries that apply to problems involving a function computation

rather than a 7-determination problem. To state these corollaries we need the following definitions.
Definition 6.3 In a graph G(V, E), let d(z, j) be the length of a shortest path between vertices i and j.
1. e(i) = maz{d(i,§) | j € V} is called the eccentricity of the vertez i.
2. center(G) = {i €V | e(i) < e(j)Vj € V} is the set of centers of G.

3. The mazimum distance between any pairs of vertices in the graph is called the diameter of the graph, t.e.,
diameter(G) = maz(; jy{d(i,5) | (i,5) € V % Vi

Corollary 6.3.1 There is no DUSSA for computing the diameter of an anonymous ring, even under the central

daemon model. O

Proof: For a fixed integer k, let 7(C) be the predicate “the diameter of C'is k”. The result follows from Proposition
6.2. O

Since in any ring, the eccentricity of any vertex is the diameter of the ring, we also obtain:

13

Figure 6: The initial configuration of K33 and the other graph in the proof of Proposition 6.4

Corollary 6.3.2 There is no DUSSA for computing the ecceniricities of the vertices of an anonymous ring, even

under the central daemon model. O

Now since the centers of a graph are those vertices that have the minimum eccentricities, the above results raise
the question whether there is a DUSSA for finding all the centers of an arbitrary anonymous network. However, it is
certainly impossible to develop a DUSSA which finds a single center in an arbitrary graph because such a DUSSA will
also serve as a DUSSA for leader election for anonymous arbitrary networks which is provably impossible [Ang80].

However, some other impossibility proofs will need other type of arguments. For example, consider the proof of
nonexistence of a DUSSA for determining whether a graph is planar. It can be shown that there is a planar graph G
(shown in Figure 6(b) which appeared in [AG81]) such that we can construct a suitable initialization, an adversarial
schedule for it from an initial state (initialization is also shown in the Figure 6 where A,B,C,D,E,F are the initial
states, not necessarily distinct) and a corresponding computation sequence for the complete bipartite graph Kz 3
(which is non-planar). The DUSSA (if one exists) will have to reach the same decision in both G and K33 which is

a contradiction. This leads to the following result:

Proposition 6.4 There is no DUSSA for determining whether an arbitrary anonymous network is planar even

under the central daemon model. O

Acknowledgement: We are grateful to the anonymous reviewers for valuable suggestions. In particular, we con-

sidered the maximum matching and diameter finding problems at the suggestion of one of the reviewers.

References

[AG81] D. Angluin and A. Gardiner. Finite common covering of pairs of regular graphs. Journal of Combinatorial
Theory, Series B, 30:184-187, 1981.

[AK93] S. Aggarwal and S. Kutten. Time optimal self-stabilizing spanning tree algorithm. In Proceedings of
the 13th Conference on Foundations of Software Technology and Theoretical Computer Science. Springer-
Verlag, LNCS, 1993.

[Ang80] D. Angluin. Local and Global properties in networks of processes. In Proceedings of the 12th Annual
ACM Symposium on Theory of Computing, University of California at Los Angeles, 1980. ACM.

[BGM89] J.E. Burns, M. G. Gouda, and R. E. Miller. On relaxing interleaving assumption. In Proceedings of MCC
Workshop on Self-Stabilization, Texas, Austin, 1989. MCC.

14

[BGWS89)]
[BP89]
[Dij74]
[DIMO1]
[DIM93]
[EK89]
[GK93]
[Gol80]

[Har69]
[Her90]
[Hoe94]

[Hua93]
[EWTo4]
[1393]

[IR81]

[KPBG94]

[Sch93]
[SRR94]

G. M. Brown, M. G. Gouda, and C. L. Wu. Token systems that self-stabilize. IEEE Transactions on
Computers, 38(6):845-852, June 1989.

J. E. Burns and J. Pachl. Uniform self-stabilizing rings. ACM Transactions on Programming Languages
and Systems, 11(2):330-344, 1989.

E. W. 'Dijkstra. Self-stabilizing systems inspite of distributed control. Communications of ACM,
17(11):643-644, 1974.

S. Dolev, A. Israeli, and S. Moran. Uniform dynamic leader election. In Proceedings of the 5th Interna-
tional Workshop on Distributed Algorithms, pages 163-180. Springer-Verlag, LNCS 579, 1991.

S. Dolev, A. Israeli, and S. Moran. Self-stabilizing Dynamic Systems Assuming Read/Write Atomicity.
Distributed Computing, 7(1):3-16, 1993.

M. Evangelist and S. Katz, editors. Proceedings of the MCC Workshop on Self-Stabilizing Systems. MCC,
Austin, TX, 1989.

S. Ghosh and M. H. Karaata. A self-stabilizing algorithm for coloring planar graphs. Distributed Com-
puting, 7(1):55-59, November 1993.

M. C. Golumbic. Algorithmic Graph Theory and Perfect Graphs. Academic Press Inc., New York, NY,
1980.

F. Harary. Graph Theory. Addison-Wesley Publishing Co., Reading, Mass., 1969.
T. Herman. Probabilistic self-stabilization. Information Processing Letlers, 35(2):63-67, 1990.

J.-H. Hoepman. Uniform deterministic self-stabilizing ring-orientation on odd-length rings. Technical
Report CS-R9423, Computer Science Department, CWI, Amsterdam, April 1994.

S. T. Huang. Leader election in uniform rings. ACM Transactions on Programming Languages and
Systems, 15(3):563-573, July 1993.

S.T. Huang, L. C. Wuu, and M. S. Tsai. Distributed execution model for s-elfestabilization. In Proceedings
of 14th International Conference on Distributed Computing Systems, pages 432-439, 1994.

J. Israeli and M. Jalfon. Self-stabilizing ring orientation. Information and Computation, 104(2):175-196,
1993. :

A. Itai and M. Rodeh. Symmetry breaking in distributive networks. In -Proceedings of the 22nd An-
nual Symposium on Foundations of Computer Science, pages 150-158, Nashville, Tennessee, 1981. IEEE
Computer Society.

M.H. Kaarata, S.V. Pemmaraju, S.C. Bruell, and S Ghosh. Self-stabilizing Algorithms for Finding Centers
and Medians of Trees. TR- 94-03, University of Iowa, 1994.

M. Schneider. Self-stabilization. Computing Surveys, 25(1):45-67, March 1993.

S. K. Shukla, D. J. Rosenkrantz, and S. S. Ravi. Developing Self-Stabilizing Coloring Algorithms via
Systematic Randomization. In Proceedings of the 1st International Workshop on Parallel Processing,
pages 668-673, New Delhi, 1994. Tata McGraw-Hill.

15

B —3

-3 1 _3

A, ; .._ ..‘h .H .._
(— S (N (I T I TS T - EE - - . - =_ 2 T

N - . IS IS B BN BN B EE T T S I IR S O BN

On the Self-Stabilization
of Processors with Continuous States
H. James Hoover*

1 Motivation and Context

We are interested in the following question:
What is an appropriate model of computation for the continuous world?

The world we have in mind is asynchronous, states are continuous values, signals take time to propagate,
and transitions between distinct state values take time. We seek a model of computation that captures
the essence of implementable computation but that is just above those that actually model the physics of
our computational devices.

We interested in this because we believe that it is useful to view the world as continuous when it comes
to low level issues of models for distributed computation. Issues such as what is an atomic operation, what
does asynchronous mean, and what is state, become especially important when one considers the problem
of discrete self-stabilization. Thus this paper asks:

What are the continuous analogs of discrete self-stabilizing systems for networks of processors
with continuous states?

The self-stabilizing systems we have in mind are those that have multiple equilibrium points, or have
a dynamic steady-state behaviour. In a sense, such systems must “choose” to return to one of many
equilibrium behaviours, and are often called upon to break symmetry to do-so. This is a considerable
extension to the usual domain of control theory which is geared toward keeping a system close to a single,
externally specified, target steady-state.

Tf one believes that discrete systems are abstractions of a continuous world; then the following question
also motivates this work: .

Does the design of self-stabilizing protocols for the continuous case yield any insight into the
models and protocols for the discrete case?

For example, even a fundamental notion such as “state” is not always clear in a self-stabilizing computation.
Is it simply the values of the shared variables, or does it include the internal state of the protocol? If the
latter, then one has to worry about the protocol “knowing” the state of the shared variable. For example,
the protocol may write a 0 to a shared variable, and then enter an internal state assuming that 0 is in
the shared variable. Meanwhile, a transient fault changes the shared variable to a 1, and thus the internal
state of the protocol is inconsistent with the external value of the shared variable.

The general content of this paper is exploratory, not definitive. We define two notions of continuous
self-stabilization: static (in which the system reaches a legitimate state and remains there) and dynamic (in
which the system enters a legitimate pattern of state transitions and remains there). We then introduce 2
model of continuous computation that is a natural extension to the well-studied model of arithmetic circuits.
Within this model we implement continuous versions of the following discrete distributed problems: two
processors agreeing on distinct identities; orienting a ring; and the token passing problem.

In all cases our solutions will be uniform, that is, all processors will have the same state transition
function, have no knowledge of their processor number, and have no global knowledge of the system they
are in (eg. number of processors in a ring).

*Department of Computing Science, University of Alberta, Edmonton, Alberta, Canada T6G 2H1, e-mail address:
hoover@cs.ualberta.ca, Web address: http://www.cs.ualberta.ca/

2 Introduction and Basic Notions

The prototypical distributed system is a collection of discrete state machines connected with a network.
Such a system is self-stabilizing if it has the property that regardless of its current state, it will eventually
enter and remain within a well-defined. set of stable states. Self-stabilizing systems capture one aspect
of fault tolerance — if some processors fault into an undesirable state then given sufficient fault-free
time the systems will return to a desirable state. A restricted form of self-stabilization to a steady-state
equilibrium point is a long-standing notion in control theory. The richness of the self-stabilization problem
appears when it is applied to computing systems, with the first such case generally credited to Dijkstra [4,
5].

In reasoning about distributed systems, it is usually assumed that state changes cannot be observed
while they are occurring. That is, the operations that change the state are atomic, and considered to occur
instantaneously. Reasoning about the system then proceeds by analyzing how the system behaves when
the execution of the atomic operations are scheduled by various styles of demon. For example the central
demon (introduced by Dijkstra in [4]) schedules only one atomic shared variable update operation at a
time, while the distributed demon (introduced by Brown, Gouda, and Wu in [1]) is permitted to schedule
simultaneous atomic update operations from different processors. The highly adversarial read/write demon
(introduced by Dolev, Israeli, and Moran) in [6] breaks shared variable update operations into read and
write phases, and allows interleaving of the phases among processors.

The behaviour of a distributed algorithm subtly depends on the interaction between the granularity of
its atomic operations and the nature of the scheduling demon. For example, under the distributed demon
an algorithm may work properly if its basic atomic operation consists of a read of a shared variable followed
by a write of a shared variable, but it may fail when this basic operation is subdivided into a atomic read
operation followed by an atomic write operation. These kinds of issues are mentioned in [1], [7], [10], [12].

Given this diversity of models, it is reasonable to ask if there is some more fundamental underlying
model. It is not obvious that a continuous model is the correct one. For example it is not at all clear what
the continuous analog of the scheduling demon should be.

2.1 Stability

Stability is a property of the steady-state response of a system. That is, it deals with the how the system
behaves as time approaches infinity from its initial conditions.

There are two notions of stability for self-stabilizing systems: In the first kind, which we call static
stability, the system reaches a legitimate configuration and remains there (for example, ring orientation).
In the second kind, which we call dynamic stability, the system reaches a legitimate pattern of behaviour
and continues to follow that pattern (for example, token passing).

To simplify the descriptions of the behaviour of a system it is useful to lump together states thh
equivalent meanings. This is especially true for continuous systems. For example, only the first component
of a state vector may be important in deciding whether the state is legitimate, so all states with the same
first component value could be lumped together. These sets of “equivalent” states we call targets.

Definition 2.1 A target is any subset of the state space. A target space is any collection of targets.

A system is in static stability if it has entered a target, and remains there:

Definition 2.2 Let S be a target. A system is said to be statically stabilized at § if its current state
and all future states are in target S.

We use the term static, even though the system could be moving about inside the target and need not
converge to a single point in the state space. This corresponds to the dynamical systems notion of a system
being stable near an equilibrium point (see [8]).

Noise is crucial to the self-stabilization of continuous systems, so their behaviour must be expressed
probabilistically. -

Definition 2.3 Let G be a target space. A system is Statically Self-stabilizing with respect to G if
regardless of its current state, within an ezpected finite time (possibly depending on the system and current
state), the system will statically stabilize at some target of G. :

Dynamic stability is much harder to define precisely, although the intuition is clear: the system must
continue with its particular behaviour. For example, if it is passing a token clockwise around a ring, it can-
not arbitrarily reverse direction, even though counter-clockwise passing may also be legitimate behaviour,
and it cannot stop the passing process. Our problem is compounded by the fact that a continuous system
may not be able to pass instantaneously between legitimate states, and instead we must describe how a
particular state trajectory q(t) encounters targets over time.

Definition 2.4 Let G be a target space, and let — be a relation on G. The pair B = (G,—) defines a
behaviour of the system. A sequence So, S1, 52, . - . of targets is an instance of behaviour B if each S; € G,
and for all i, S; — Sit1.

A system is dynamically stabilized if it passes through exactly the targets of a behaviour:

Definition 2.5 Let ¢(t) be a state trajectory. The target sequence induced by ¢(t) is the sequence of
targets So, S1,-- - such that g(0)~is in Sp, and for all i > 0 and t > 0, if q(t) is in S;, and A > 0 is the
smallest value such that q(t+ A) is in a target different from S;, then g(t + 6) is in Siad

Definition 2.6 Let G be a target space. A system is said to be dynamically stabilized in behaviour
B if the target sequence induced by the state trajectory beginning with the current state is an instance of
behaviour B. :

Definition 2.7 Let G be a target space, and B a behaviour. A system is Dynamically Self-stabilizing
with respect to B if regardless of its current state, within an ezpected finite time (possibly depending on
the system and current state), the system will dynamically stabilize in behaviour B.

2.2 Discrete Model of Computation

No single model of discrete computation is common to all self-stabilization problems. For the purpose of
this work, the following informal model of processors communicating by sharing registers will do.

Informal Definition 2.8 Discrete Model: Processor inputs and outputs are integers (of fized length),
but interpreted as scaled fized-point rational numbers of resolution ¢, with || < 1/2. Processors can perform
the usual arithmetic and logical operations, and in addition have a random operation that uniformly selects
a value from the given set. A processor does atomic reads of its inputs, and atomic writes of its outputs.
Between any two I/O operations, the processor computation is also atomic in the sense that it uses only
local data, and so does not depend on the actions of any of the other processors. Scheduling of processors
by the demon is in terms of the atomic I/O operations. If atomic operations are scheduled for two or more
processors at the same time, then all read operations complete before any write operations begin. The state
of a processor is the value of its outputs plus the position in the program just before the next I/0 operation
to be erecuted. A step of the computation is the simultaneous ezecution of one or more atomic operations.
For the purpose of Definition 2.3, time is measured in steps.

2.3 Continuous Model of Computation

Our goal is a computation model that is above the physical device layer. That is, we do not want to do a
full simulation of a VLSI circuit. Instead we want a model that captures the (arguably) continuous nature
of the various possible mechanisms for performing computations, be they electronic, mecha,mca.l hydraulic,
or pneuma,tlc

What does it mean to have a continuous computat10n7 If we wish to eliminate operation atomicity,
then we require both continuous time and continuous state. That is, our computation is described by a
system of differential equations. The actual computation is the trajectory that the system follows over
time, starting from given initial conditions. To pursue this approach we must address the following basic

issues:
e What measurable quantities constitute the state of the system?
e What mechanism generates the instantaneous state change?
e What is a transient fault?
e What effects correspond to the activities of the scheduling demon?

The first issue is relatively simple to address. If a program for the continuous machine is a system
of differential equations %f = f(Z,t) then the state of the system is simply the vector of variables #. A
computation is the integration of this system with respect to time using an “analog” computer.

How the analog computer is “programmed” depends on how the instantaneous state change function
f is represented? In particular, we need to be able to represent non-linear functions, for no computation
involving decisions is possible without them.

One approach would be to build in special non-linear basis functions, for example the signum function
or the delta function. Of course since these two functions are dlscontmuous we would actually build in
sets of increasingly accurate continuous approximations. -

An alternative approach is to have a model that has a basic set of operations powerful enough to
directly compute continuous approximations to the non-linear basis functions. Many possible approaches
suggest themselves. For example one could use approximating polynomials, rational functions, or Fourier
series. How do we chose among the alternatives?

The choice is simplified by two factors. The first is that there already exists one well-studied continuous
model that is a.ppropnate for representmg f — arithmetic circuits over the reals. Such circuits consists of
acyclic networks of +, —, X, and -~! gates. These circuits enable one to construct efficient (small circuit
size) rational appromma,uons to non-linear basis functions, in contrast to power series methods which
typically converge too slowly to be computed efficiently. Spec1a1 variants, called feamble-sme-magmtude
circuits have properties that enable their efficient numerical simulation (Hoover [9]).

Another factor that influences our choice of model is our desire to use mutual simulation in order to
show equivalence between the discrete and continuous models under various conditions. This particular
formulation is well suited to this, but further discussion is not appropriate here.

To complete our model of computation, we extend the notion of an arithmetic circuit over the reals (a
circuit with 4+, —, X, and -~! gates) by relaxing the condition that the circuit be acyelic, and by adding
another type of ga.te called an integration gate. An integration gate has a constant parameter z; giving the
initial condition of the gate at time ¢ = 0, and a single input dtz(t) At time ¢, the output of the gate is
z;+ fo c”x(t) dt. Even though this model permits gates to have arbitrary real values, in practice no physical
system is unbounded, and the circuit should be designed so that all gates, including the integration gate
maintain bounded values over the computation.

Informal Definition 2.9 Continuous Model: A continuous state circuit is a cyclic arithmetic cir-
cuit over the reals such that every cycle passes through at least one integration gate. The state of the
computation at time t is the vector consisting of the outputs of all the integration gates in the circuit.

It is important to note that the state of the circuit is defined by exactly the outputs of the integration gates.
If f corresponds to the state change function in a discrete computation, then one can view integration gates
as corresponding to memory.

A related model of analog computation has been around for some time. One of the first studies of the
computational power of the General Purpose Analog Computer was by Shannon [15], which showed that
GPACs compute exactly the solutions to algebraic differential equations. This proof had a flaw, corrected
by Pour-El [14]. This was further corrected by Lipshitz and Rubel [13]. Our model is slightly different,
allowing inversion gates, and exploiting noise.

Two issues remain to be discussed — transient faults and the scheduling demon. If the system of
differential equations is autonomous (f only depends on & not t) then a transient fault can simply be
modelled by an instantaneous change in the state variables. If the system is non-autonomous, then it has
some memory of past state, and so a transient fault must be modelled as an external forcing function that
operates over time to change the state. Depending on how the system has been designed, the magnitude
of a fault can be bounded or unbounded.

The most serious weakness of this continuous model is in its ability to model the scheduling demon.
We could possibly model scheduling effects by introducing non-constant signal propagation delays between
processors. This, as one expects, seriously complicates reasoning about the behaviour of the system, for
delays can introduce unstable oscillations in exactly the same manner as the scheduling demon. But the
scheduling demon does more than delay signals. By suitably scheduling I/0 operations, it can cause the
slower processor to miss changes. For example, the fact that a processor wrote 1 then 0 then 1 may not
even be perceived by its neighbour. It is not clear how such behaviour should should be modelled. One
possibility is to vary the time scale associated with each processor so that a delayed processor operates
very slowly relative to the active processor.

3 Static Self-Stabilization: Distinguishing a Pair

Consider the following problem. Two processors Py and Py share two bits of ﬁemory bo and b;. Processor
Py reads bg as its input bit, and writes by as its output bit. Processor P, does the opposite. The problem
is for the two processors to set their bits to different values.

This problem has various solutions, depending on the atomicity and scheduling models, but all uniform
solutions are essentially this: Keep randomly setting your output bit so long as it matches your input bit.
(In order to break symmetry, discrete state uniform protocols require randomness [2], [3], [12].) Israeli and
Jalfon give a solution to this problem under the read/write demon (a distributed demon with atomic reads
and atomic writes) in [12].

To establish intuition for the continuous case, we present a slightly different version of the problem,
with essentially the same solution as the Israeli and Jalfon protocol. The problem we wish to solve is the
same for both discrete and continuous cases: :

Informal Definition 3.1 The Pair Distinguishing Problem is to give a self-stabilizing uniform pro-
tocol for two processors such that the processors agree on opposite signed states with magnitude near 1.

3.1 Discrete State Case

We first consider the case of a discrete system.

For the Pair Distinguishing Problem we require two processors labelled Fo and P;. They each have
one input and one output, with their outputs labelled bo and by. Processors are connected so that the
output of one goes to the input of the other. The state of this system is the vector (bo, 1) The code for a
processor is given in Figure 3.1.

Output x;
Input j;
loop {
read y;
dx := sgn(x-y) - x + random{-epsilon,0,+epsilon};
X := X + dx;
write x;

Figure 3.1: Discrete Pair Protocol

Our approach will be to view self-stabilization as a control problem. The set-point of a processor will
be a function of its and its neighbour’s state, and the state-change function will compute the numeric
difference between the current state and the next state.

According to the protocol of Figure 3.1 when processors have different states, then their set-points are
determined such that the processors change states in different directions. The set-point for a processor is
sgn(z —y), where the (discontinuous) signum function sgn(z) is —1,0, +1 depending on whether z < 0, z =
0,z > 0. For example, the set-point for a processor is —1 if its state z is closer to —1 than its neighbour’s
state y.

Thus the magnitude of the state change in order to reach the set-point is sgn(z — y) — z. A random
perturbation is added to the state change to break symmetry in the event tha,t both processors are in the
same state. This results in the incremental state change of

dz = sgn(z — y) — ¢ + random{—e¢, 0, +¢}
Let G4 be the target space for the discrete pair protocol, consisting of the-following two targets:
{Ll-el+ex{-1,-1—¢—-1+¢}

{-1,-1-¢-14+€¢ x{1,1-¢,1+¢}
Then the following holds:

Proposition 3.2 Under the Discrete Model the Discrete Pair Protocol with target space G4 is statically
self-stabilizing. Furthermore, if the system is in a state outside of any target in G4, then the ezpected
number of steps before the system enters a target in Gy is O(1).

Proof Sketch. First observe that when by # b; the processors must change to states near +1 and of
opposite sign. Then suppose that by = b; and examine all possible ways that the next few operations can
be scheduled. In all cases, there is a non-zero probability that the two processors enter distinct states that
are also different from their original equal values. 0

3.2 Continuous State Case

Our continuous protocol for the pair distinguishing problem will be a direct analogy to the discrete protocol.
Each processor consists of an integration gate, with a standard arithmetic circuit to compute the input to
the gate. The processor has one input, and one output. The state of a processor in the continuous system
is the value of the output of the integration gate. The state of the system at time ¢ is the real-valued pair
(bo(t),b1(2)). The two processors and their interconnection is shown in Figure 3.2.

8(bo(), b1(1)) 8(ba(2); bo(t))

it fiae
bo(t) ba(t)
Py P

Figure 3.2: Continuous Model of the Pair Problem

In direct analogy to the discrete case, the (instantaneous) next-state of a processor, as a function of it
current state, is given by

%m(t) = §(z(t), y(t))

That is, the change in output z of a processor is a function of the current values of the output z, and of
the input . Connecting up the two processors we get the system of ordinary differential equations:

2 bolt) = 8(bo(0), (1) D h1(2) = 6(61(2),bo1))

The current state of a processor at time t is obtained by integrating the state-changes from time 0 to t.

What does § look like? The intuition behind the function § is exactly the same as for the discrete
pair protocol computation of dz. The function & must ensure that the system is driven towards stability
regardless of the current state, and when the system is stable it remains so. We have two goals for §. One
is to keep the state values within reasonable bounds — if the current state of a processor is outside the
interval [—1,1] it should tend to drive the state towards that interval. The other is to ensure that each
processor enters a state opposite in sign to the other.

Since discontinuous functions cannot be computed by arithmetic circuits [9], we cannot actually use
the sgn function in the computation. But we can use a continuous analogue:

3z

Sn(a:)_: 5-;;2—5-_1

The graph of Sn(z) is shown in Figure 3.3.
As for the random term that appears in the discrete protocol, this we drop and replace by noise. More
on this later.

Figure 3.3: Sn(z); and §(z,y) at y € {0,0.6,1.5}

Then ¢ can be written as the-proportional-control function

Iz -y)

3
6($,y)= §Sn(:c—y)—a:= m—m

The graph of this function, for various values of y is shown in Figure 3.3. As a control function it has most
of the features we desire. The state is driven towards [—1,1] if it is outside that interval, and inside the
interval processors have their states driven in opposite directions.

But does the pair of processors stabilize? We define our continuous target space G., in an analogous
way to the discrete case, by the two targets

{(z,9) | = € B(1), y € B.(-1)}

1(z,9) | © € Be(-1), y € B(1)}

for some fixed but arbitrary tolerance ¢, and where Be(a) = {zla—€ < z < a+ €}

Solving the system for its equilibrium points where § is zero gives three solutions: (0,0), (-1,1), and
(1, —1). By examining the vector field plot of § (Figure 3.4), and a tedious Liapunov analysis, not presented
here, we find that the points (—1,1) and (1,-1) are asymptotically stable (that is, attractors), the point
(0,0) is unstable, and the system has no other limit cycles.

Thus two of the equilibrium points are in distinct targets of G.. We would like to rule out the equilibrium
point (0,0) since this is not in any target. Note that (0,0) is an attractor when approached on the line
¢ = y — the symmetric situation in which the two processors are in the same state. But since (0,0)
is unstable, in any real physical system, noise would tend to push the system off of (0,0) and it would
move toward a target in G.. Thus randomness in a discrete system is replaced by noise in a
continuous system.

NNAY \, :" ! / [e/
\\\\\\\ ly ," 1’(’1 /(’-/e“-—’v—"(//';“
\\\\\\.}. ';"//f’f //.‘I
SNNAN Y S e /il
SN \‘, /(’T-N'--"-w--\’/ : I i
B Gt R 4 i ’ l {
ey AR RS
o7 TANNNNIN=/ L
/'//']‘i LANNNY \/‘r ‘! \ ‘r I ! ! /
744 T AAANNEA NN ‘ 11/
AR B IR ARARE T %
AR R ERSYA NN 12275
AR R RN NN I s
[l "5]/*—*\. MNOSNN Y e
[RER R EFEESN R Y C
i 117 7o J A NN
{117~ e A I G e
i] 7o—m———ee s 7 TAANANANN
///__*_.._»,.-._-// r/j",' \‘.\u\\\\
Jommemrrz 28 11 AANANN

Figure 3.4: Vector field for Pair System

Proposition 3.3 Under the Continuous Model the Continuous Pair Protocol-with target space G. is stat-
ically self-stabilizing. Furthermore, if the system is in a state (bo,b;) outside of a target of G, then the
ezpected time before the system enters G is O(1/bf + b3).

It is important to note that Sn is easy to compute, and has well behaved derivatives. This means
that numerical solutions of the continuous system can be efficiently computed, and so the system can be
converted into a discrete one directly via simulation.

4 Static Self-Stability: Orienting Rings of Processors

A more interesting example of static self-stability is ring orientation.

Informal Definition 4.1 The Ring Orientation Problem is to give a self-stabilizing uniform protocol
for a ring of processors such that the processors agree on a consistent orientation.

One style of algorithm for the Ring Orientation Problem [10], [12] is this: Associate an orientation
arrow with each processor. Look at the neighbouring processor the arrow is pointing to. If that processor is
pointing back, then randomly flip your pointer.

The interesting thing about the continuous version of this problem is that seems to be unsolvable by
a simple first-order system of differential equations. Because a processor is changing focus between its
left and right neighbours, it needs some notion of velocity in order to survive a transient fault that alters
its state (i.e. current integration gate values). Thus each processor has two state variables, its pointer

9

direction z, and the velocity v of the pointer. The direction is interpreted as —1 pointing fully left, +1
pointing fully right, and values in between being interpolated angles, with 0 pointing upward. Only the
pointer direction is available to the neighbours of the processor.

The basic control function é takes the pointer value of the processor (z) and its left (/) and right (zr)
neighbours; and the velocity (v) of its own pointer, and computes an acceleration (dv/dt) for the pointer.
Two integration gates in series yield v(t) and z(%).

Control function § is a linear combination of a limit function B (to keep the pointer state between —1
and 1), an inertia function x (to keep the state moving when it is making direction changes), a set-point
function o (that determines the desired direction of the pointer given the state of the neighbour currently
being pointed to), and a convergence term that drives the state towards the set-point.

6(z,v,zl,zr) = B(z) + p(z,v) + o(zl,z,2r) -z — v
5
-z
A= e
S5V
V)= ———
I‘I’(I’) 4(-'54'*" 1)

The set-point function o(zl,z,zr) is unusual — it is a continuous encoding of the state transition table
used by the discrete protocol. That is, o(zl,z,zr) computes the next state from the states zl, z, zr of
the left neighbour, processor, and right neighbour. This relationship is used to argue that the continuous

protocol inherits its proper behaviour from the discrete protocol.
To construct o we need a function €,(z) that determines if z is near point p.

1

EP(‘T) = 1% (l‘ s p)4
Then o is the following linear combination:

glel. s, or)=
a(z)ea(zr) — e—1(zl)e-a(z) +
e1(z)e—1(zr)Sn(z + 2r) + e(zl)e—1(z)Sn(zl + z)

Which preserves the orientation of the processor unless it conflicts with its neighbour, in which case the
processor with the smaller magnitude orintation switches direction.

Proposition 4.2 There ezists a uniform self-stabilizing protocol under the Continuous Model that solves
the Ring Orientation Problem.

Figure 4.1 illustrates a sample trajectory of four processors initially oriented symmetrically in two
head-to-head pairs which converges to a common orientation.

5 Dynamic Self-Stability: Token Passing

The prototypical example of a dynamic self-stabilization problem is to create a unique token (representing
some kind of privilege) that is passed among processors.

Informal Definition 5.1 The Token Passing Problem is to give a self-stabilizing uniform protocol for
a pair of processors such that ezactly one token is continuously passed between the processors.

10

[y0,yL,y2,13] vs t

Figure 4.1: Example Trajectory of Ring Orientation
Time evolves on the vertical axis, the horizontal axis represents the

starting state of 4 processors yp to ys in a ring initially oriented in
two head-to-head pairs.

An example of a basic token passing protocol is given by Israeli and Jalfon [11]. Each processor has
three states: idle (I), sending (S), and receiving (R). Processors examine their neighbour’s state, and follow
a basic cycle of ;

IERL s 8y ‘

where the label on the transition is the state of the other processor. To get the protocol to self-stabilize,
the following transitions are added:

851, REF TSAT.5}

That is, a processor moves to the idle state if its neighbour is in the same state, unless both processors are
idle, in which case a processor attempts to break symmetry by randomly moving to state S or L.

The self-stabilization is achieved by phase-locking the cycles of the two processors, shifted out of phase
by one transition. When stabilized, the system will move through the following limit cycle

15, k5. BRI, 5L, SR, IR, IS5, +-

Our continuous solution to this problem exploits this phase-locking intuition.

Each processor has two state variables, b and b, which represent ownership of the token and its state of
transfer. When b is positive, the processor thinks it holds the token, and when b is negative the processor
thinks the other processor holds the token. When b is positive, the processor is taking possession of the
token, and when b is negative, the processor is handing over the token.

The goal of the control function § is to ensure that the processors have coordinated notions about the
passing and ownership of the token. The two processors and their interconnection is shown in Figure 5.1.

Function é takes the ownership state z, the local passing state v, and the neighbour’s passing state v'.
It is a linear combination of two limit terms $(z) and $(v) (which keep the ownership and passing values

11

1 I
h i
i 1
: 1
: ‘ ; i
! B ! |
! I 1 I
|: (5(60,&0,61) E |: 6(blablsi’0) E
: » :
1 I I
1 I I I
1 0 | : 0 :
: Do : .
: bo L by |
1 1 I 1
1 t ! i t :
! Jodt = Jodt :
I I 1 I
: bg i E bl i
: Po o Py |

Figure 5.1: Continuous Model of the Token Passing Problem

roughly between —1.5 and 1.5), an inertia function x (to keep the state moving when it is making a token
transfer), a set-point function ¢ that determines the desired ownership state given the current ownership
state, and a phase locking term that drives the processors to have the same magnitude but opposite sign
passing states.

(2, v,9') = B(2) + B(o) + u(a,v) + o(z) — L2
Ale)= zt + 16
2, 0) = 3v
(162% 4+ 1)(2v2 + 1)
2 2

@)= BETr 1 16(z—1)% + 1

The set-point function o(z) is again a continuous encoding of a state transition table.
We define our target space G, for the Token Passing Problem by the two targets

{(b0,bo) | bo > 0} x {(b1,b1) | b1 < 0}

{(%0,50) | bo < 0} x {(b1, 1) | by > 0}

and our desired behaviour B by the continuous alternation of the two targets.

Proposition 5.2 There ezists a uniform self-stabilizing protocol under the Continuous Model that solves
the Token Passing Problem.

12

>t el = S O
o T i e
== e = PR
=T i

e i EEaeme
= L =
==
= e
= P —
| —
<__/-
e E T
—)
—— i e
—— L Pr—
7 _—— 1= R
L —— ———
L~ —_—
= AR —
S
e
S VTGN
5 [.

1.5

Figure 5.2: Token Passing - Ownership (top) and Passing State Trajectories
Time evolves on the vertical axis, the horizontal axis represents the starting state

of the pair of processors. Both initially think they own the token and are about to
pass it.

13

Proof Sketch. Solving 6(bo,0,0) = 0, é(b1,0,0) = 0 yields only complex roots, so no equilibria exist
for the system, and thus it must be continuously changing state. Since the system globally converges to
a ball near the origin, its behaviour is asymptotically bounded, and thus it must have cyclic behaviour.
What kind of limit cycles does the system have? If both processors start with exactly the same ownership
and passing states, the the system is symmetric, and in the absence of noise both processors will follow
exactly the same trajectories. But this cycle is not stable, in the sense that any noise kicks the system off
of this cycle. The cycle defined by bg = —b; and bp = —b; is insensitive to small perturbations, and is an
attracting cycle, which gives the system the desired stable behaviour. The problematic part of the proof
is showing that no other cycles exist, and thus the system is self-stabilizing.

Figure 5.2 illustrates a sample trajectory of two processors initially with the same state of token
ownership, but slightly different passing notions. Note the stabilization into a limit cycle.

It is an interesting exercise to obtain a discrete passing protocol by discretizing the continuous one.
After some optimization, the result is very much like the Idle-Sending-Receiving protocol at the beginning
of this section.

6 Final Remarks

One observation is that our solutions to the Processor Distinguishing Problem, the Ring Orientation
Problem, and the Token Passing Problem were all designed so that adjacent processors had only two
possible targets in common, and thus the targets could be encoded as —1 and +1. No other target could
be encountered when moving between these two. Three or more targets cannot be arranged on a line, but
instead must be arranged on the plane if this non-collision property is to be preserved. We have attempted
this technique on a few protocols, and it does not appear to have any insurmountable problems.

A more important observation is that unless we introduce time delays, possible loss in the propagation of
signals, and variations in speed between processors we cannot model the behaviour of a discrete scheduling
demon. This is the next step in our program, and it will likely determine if sich continuous models have
any merit at all.

References

[1] G. M. Brown, M. G. Gouda, and C. L. Wu. Token systems that self-stabilize. IEEE Trans. on
Computers, 38(6):845-852, 1989. .

[2] J.E.Burnsand J. Pachl. Uniform self-stabilizing rings. ACM Transactions on Programming Languages
and Systems, 11(2):330-344, April 1989.

[3] E.J.Chang, G. H. Gonnet, and D. Rotem. On the costs of self-stabilization. Information Processing
Letters, 24:311-316, March 1986.

[4] E. W. Dijkstra. Self-stabilizing systems in spite of distributed control. Communications of the ACM,
17(11):643-644, November 1974.

[5] E.W. Dijkstra. A belated proof of self-stabilization. Distributed Computing, 1:5-6, 1986.

[6] S. Dolev, A. Israeli, and S. Moran. Self-stabilization of dynamic systems assuming only read/write
atomicity. In 9" Ann. ACM Symp. on Principles of Distributed Computation, pages 103-118, August
1990.

14

[7] S. Ghosh. Binary self-stabilization in distributed systems. Information Processing Letters, 40:153-159,
November 1991.

[8] J. Guckenheimer and P. Holmes. Nonlinear Oscillations, Dynamical Systems, and Bifurcations of
Vector Fields. Springer-Verlag, 2nd revised edition, 1986.

[9] H.J. Hoover. Feasible real functions and arithmetic circuits. STAM Journal on Computing, 19(1):182-
204, 1990.

[10] H. J. Hoover and P. Rudnicki. The uniform self-stabilizing orientation of unicyclic networks. Technical
Report TR 91-02, Department of Computing Science, University of Alberta, Edmonton, Alberta,
Canada T6G2H1, August 1991.

[11] A. Israeli and M. Jalfon. Modular constrcution of uniform self-stabilizing protocols. Technical report,
June 1993.

[12] A. Israeli and M. Jalfon. Uniform self-stabilizing ring orientation. Information and Computation,
104:175-196, 1993.

[13] L. Lipshitz and L. A. Rubel. A differentially algebraic replacement theorem and analog computability.
Proceedings of the American Mathematical Society, 99:367-372, 1987.

[14] M. B. Pour-El. Abstract computability and its relation to the general purpose analog computer (some
connections between logic, differential equations and analog computers). Transactions of the American
Mathematical Society, 199:1-28, 1974.

[15] C. E. Shannon. Mathematical theory of the differential analyser. Journal of Mathematics and Physics
of the Massachusetts Institute of Technology, pages 337-354, 1941.

15

— 0 0O 3 .3 3 &99a /3 = 113 —O ™1

Self-Stabilizing Clock Synchronization in the Presence of Byzantine
Faults*

(Preliminary Version)

Shlomi Dolevt Jennifer L. Welch!

Abstract

We initiate a study of bounded clock synchronization under a more severe fault model than that
proposed by Lamport and Melliar-Smith [LM-85]. Realistic aspects of the problem of synchronizing
clocks in the presence of faults are considered. One aspect is that clock synchronization is an on-going
task, thus the assumption that in any period of the execution at least two thirds of the processors are
nonfaulty is too optimistic. To cope with this reality we suggest self-stabilizing protocols that stabilize
in any (long enough) period in which less than a third of the processors are faulty. Another aspect is
that the clock value is bounded. A single transient fault may cause the clock to reach the upper bound.
Therefore we suggest a bounded clock that wraps around when appropriate.

We present two randomized self-stabilizing protocols for synchronizing bounded clocks in the presence
of Byzantine processor failures. The first protocol assumes that processors have a common pulse, while
the second protocol does not. A new type of distributed counter based on the Chinese remainder theorem
is used as part of the first protocol.

1 Introdu‘ction

In a distributed system, it is often necessary to keep the logical clocks of the processors synchronized.
In such a system physical clocks may drift and messages could have varying delivery times. Moreover,
processors may be faulty, and in many cases the type of failures is not predictable in advance. To handle
this situation, the worst type of failures must be considered, namely Byzantine faults [LSP-82]. In the
presence of Byzantine faults a processor can exhibit arbitrary “malicious”, “two faced”, behavior.

The problem of keeping clocks synchronized in the presence of Byzantine faults has been extensively
studied (e.g., [HS+-84, LM-85, MS-85, DHS-86, ST-87, WL-88, RSB-90]). Lamport and Melliar-Smith
[LM-85] were the first to present the problem and show that 3f + 1 processors are sufficient to tolerate
f Byzantine faults. The necessity of 3f + 1 processors to tolerate f faults was later proved in [DHS-86].
A weaker fault model called authenticated Byzantine allows a protocol that can tolerate any number of
faulty processors [HS+-84]. In that failure model reintegration of repaired processors is only possible if
less than half the processors are faulty. Many of the protocols for this problem assume that the clocks are
initially synchronized and thus focus on keeping them synchronized in the presence of clock drift.

The problem of how to ensure that the clocks are initially synchronized was addressed in, e.g., [ST-87,
WL-88]. In these protocols, some mechanism is assumed that allows all the nonfaulty processors to begin
the protocol within a bounded time period of each other. The mechanism essentially is that the processes

*Supported in part by TAMU Engineering Excellence funds and NSF Presidential Young Investigator Award CCR-9158478.

'Department of Mathematics and Computer Science, Ben-Gurion University, Beer-Sheva, 84105, Israel. e-mail:
shlomi@cs.bgu.ac.il.

!Department of Computer Science, Texas A&M University, College Station, TX 77843. e-mail: welch@cs.tamu.edu.

are assumed to wake up in a distinguished initial state, in which they can uniquely perform initializing
actions, including communication with each other.

In this work we weaken the assumptions made for the design of clock synchronization protocols in the
presence of Byzantine faults. Our goal is protocols that cope with a more severe (and realistic) fault model
than the traditional Byzantine fault model [LSP-82]. Initially, protocols that tolerate Byzantine faults were
designed for flight devices that need to be extremely robust. In such a device the traditional assumptions
could be violated: Is it reasonable to assume that during any period of the execution less than one third
of the processors are faulty? What happens if for a short period more than a third are faulty (perhaps
experience a weaker fault than a Byzantine fault)? What happens if messages sent by nonfaulty processors
are lost in one instant of time?

In this paper we present self-stabilizing protocols that can overcome these problems. Such temporary
violations of the assumptions can be viewed as leaving the system in an arbitrary initial state from which
the protocol resumes. Self-stabilizing protocols work correctly when started in any initial system state.
Thus, even if the system loses its consistency due to an unexpected temporary violation of the assumptions
made (e.g., more than one-third faulty, unexpected message loss) the system synchronizes the clocks when
subsequently the assumptions hold (e.g., less than a third experience Byzantine faults).

Originally, Dijkstra defined (in [Dij-74]) a protocol to be self-stabilizing if, when started in an arbitrary
system state, the system converges to a consistent global state that realizes the task. Self-stabilizing
protocols are resilient to transient faults — faults that cause the state of a processor to change arbitrarily
and then from the new state, the processor resumes operation according to its program. A permanent
fault is a fault that causes a processor to permanently misbehave. A protocol tolerates hybrid faults if
it is resilient to both transient and permanent faults (e.g., [DW-93, GP-93] which consider napping and
omission faults, respectively). We are interested in clock synchronization protocols that can tolerate hybrid
faults: they should work from an arbitrary initial configuration and they should tolerate less than a third
of the processors exhibiting permanent Byzantine faults.

A realistic assumption for a clock synchronization protocol is that a 64-hit clock is “unbounded” for
most possible applications. However, in the context of self-stabilizing protocols transient faults could cause
the system to reach the upper bound of the clock at once. Thus, another aspect of the problem should be
considered: the fact that the clocks are bounded.

In this paper we present two randomized self-stabilizing clock synchronization protocols that work in
the presence of Byzantine faults. Both protocols work for bounded clocks. The first assumes the existence
of a common pulse while the second does not make this assumption. The expected stabilization time of
both protocols is exponential in n. This is a drawback when the number of processors is large. However,
in addition to being of theoretical interest, we believe that our protocols could be of practical interest, at
least when the number of backup processors is small.

One of the contributions of this paper is an interesting usage of the Chinese remainder theorem for
implementing a distributed counter. This counter is used to accelerate the first protocol.

The remainder of the paper is organized as follows. In the next section we formalize the assumptions and
requirements for the protocol. Section 3 presents a clock synchronization protocol under the assumption of
a common pulse. In Section 4 we present a protocol that does not assume the existence of common pulses.
Conclusions are in Section 5.

2 Definitions

A distributed system consists of a set of processors that communicate by sending messages to each other.
Messages have a bounded delay. Each processor has a bounded physical clock that is constantly incre-

mented, wrapping around when appropriate; the physical clocks at the different processors run at approx-
imately the same rates. Each processor also has a bounded logical clock, which is computed as a function
of the current state and physical clock value. The goal is for the logical clocks of the nonfaulty processors
to become and subsequently remain close to each other, while continuing to progress at a reasonable rate
(wrapping around when appropriate). We consider two types of timing behavior of the system, synchronous
and semi-synchronous. In both models, processors take steps either when they receive a message, or when
their physical clocks reach some predetermined value. In addition, in the synchronous model, there is a
common pulse that periodically occurs simultaneously at all processors, causing them to take a step. We
now proceed more formally. : :

Each processor P;, 1 < i < n, is modeled as a state machine. Associated with the processor is its
physical clock, which takes on integral values from 0 to M. — 1 for some M,.. The state contains a
distinguished timer variable that can take on the values 0 to My, —1 and nil; it indicates that the processor
wants to take a step the next time its physical clock has the given value. A transition takes the current
state of the processor, the current value of its physical clock, and a message received (if any) and produces
a new state of the processor and a set of messages to be sent. The message system holds all messages sent
but not yet received. A configuration of the system is a set of processor states, one per processor, a set of
physical clock values, one per processor, and a state for the message system.

An execution is an alternating sequence of configurations and events Cp, e, Ci,-+-. In a semt-
synchronous ezecution, events happen at real times, taking one configuration to the next. There are
two types of events. One type is a tick of some processor’s physical clock, causing it to increase by 1 mod
M. Nothing else changes. We require that the real time elapsed between two successive ticks of the same
processor be between 1 — p and 1 + p for some fixed p.

The other type of event is a. step of some processor. No processor can take more than one step at
the same real time. In the step, the processor may or may not receive a message. The real time elapsed
between the sending and receiving of any message must be in the range [d — €,d + €] for some fixed d
and €. There is a fixed set of faulty processors of size f, where n > 3f. If the processor taking the step
is nonfaulty, then the succeeding configuration must correctly reflect the processor’s transition function
acting on the message received and the state and physical clock in the preceding configuration. Thus the
only changes are to the processor’s state and the message system (removing the message received and
adding the messages sent). If the processor taking the step is faulty, it can change state arbitrarily and
add arbitrary messages (from itself) to the message system.

In a synchronous ezecution, in addition to the above constraints, there exists a value 7 > 0 such that,
for all 4, every processor P; receives a special Pulse message (from a dummy processor) at time i- 7. (Le.,
all the processors take a step at each pulse and the pulses occur regularly with period 7.)

We require that for every processor F; there exist a function clock; that, given a state of P; and a value
for P;’s physical clock, returns a value in the range 0 to M, — 1 for some fixed Mj.. This is the logical
clock of P;. Given a particular execution Co, €1, .., we denote by clock;(t) the value of the function clock;
applied to P;’s state and physical clock value in C;, where j is the configuration in the execution whose
real time of occurrence is the largest not exceeding . We require that there exist a finite time for which
the following two conditions hold:

Clock Agreement: There exists 7 < M;./4 such that for all ¢ > t, and all nonfaulty processors P; and
P;: clock(t) — clockj(t) (mod M) < 7.}

Clock Validity: There exists A, 0 < A < Mj./4, and there exists a > 0 such that for all real times ¢ > i
and all 4, if clocki(t) = T, then T + A/(1 + a) mod (M) < clocki(t+ A) < T + (14 a)A mod (M).

1The constant 4 is chosen for convenience; any constant larger than 2 is sufficient. Note that if the constant is 2 then this
condition holds for any arbitrary configuration, since every two clock values are at most M. /2 apart.

Clock Agreement states that after ¢, the difference between any two nonfaulty processors’ clocks is at
most 7. Clock Validity states that after ¢,, the amount of logical clock time that elapses during A real
time is a linear function of A.

3 Synchronous Protocol

We first describe a protocol for the synchronous system, in which nonfaulty processors have access to a
periodic common pulse. Each pulse triggers the processors to synchronize their clocks. The time between
two successive pulses appears to be an important parameter to the problem. In case two successive pulses
are farther apart than the time required to run a Byzantine agreement protocol, then the following scheme
solves the problem: Every pulse starts a new version of the Byzantine agreement to agree on the common
clock value. However, when the pulses are only on the order of the round trip message delay apart, this
scheme cannot work.

We assume that the pulses are on the order of the round trip delay apart. Recall that 7 is the time
between two successive pulses. Nonfaulty processors send messages and update their logical clocks only
when a pulse occurs. We assume that 7 is long enough such that when a pulse takes place, no message sent
by a nonfaulty processor in the previous pulse is present in the system. Whenever a nonfaulty processor
P is triggered by a pulse, P sends a message with its clock value to all its neighbors. Then P waits to
receive all the clock values of the other processors. P waits for a period (1 + p)(d + €) that is longer than
the bound on the message delay and accounts for clock drift. If during that period P receives more than
one message from some neighbor, say @, then P uses the latest value that arrives from . Thus, at the
end of such a period P has a set of at least n — f logical clock values, at most one value for each nonfaulty
processor including P. P uses the set of the logical clocks received in order to-choose its own clock value.

The formal description of the protocol appears in Figure 1. We now describe the protocol informally.
The protocol for a processor P works as follows: (1) if the value of P’s clock appears less than n — f times
in the set of the received logical clocks then P assigns 0 to its clock. Otherwise, (2) in case that the value
of P’s clock appears at least n — f times, we further distinguish between the case (2.1) in which P’s clock
value is not equal to 0 and the case (2.2) in which it is equal to 0. In case (2.1) P increments its clock
by 1 (modulo the number of clock values M;.). Case (2.2) is further subdivided into two cases: (2.2.1) in
which (according to the state of P) in the previous pulse P incremented its clock by 1 (and the result was
0) and the case (2.2.2), otherwise. In case (2.2.1) P increments its clock by 1 (to be 1). In case (2.2.2) P
tosses a coin and assigns the result (0 or 1) to its clock.

The protocol guarantees (with probability 1) that the system eventually reaches a global state in which
all the nonfaulty processors have the clock value 1. Once such a global state is reached the clocks are
synchronized: In every pulse, every nonfaulty processor P receives messages from at least n — f — 1
processors containing a clock value that is identical to its own clock value. Moreover, a pulse in which
all the nonfaulty processors set their clocks to 0 always follows a pulse in which every nonfaulty processor
increments its clock value by 1 to set it to 0. Thus, case (2.2.2) is not applied.

The main idea of the protocol is to ensure that only when there are “enough” nonfaulty processors with
the same clock value will this value be incremented. It is proved in the sequel that in any pulse at most
one clock value of nonfaulty processors is incremented by 1 while the rest of the values are changed to be
zero. This ensures that after the first pulse, the set of clock values of the nonfaulty processors contains at
most two elements. Moreover, if two such elements indeed exist one of them is 0.

At first glance this seems to be sufficient and no coin toss is needed; the value that is incremented will
eventually wrap around to 0 and at that time the clocks of all the nonfaulty processors will be 0. However,
we now describe an infinite execution, E, that does not use coin tosses in which the clocks never become

synchronized. Consider a system with four processors P1, P2, P3 and P in which P, exhibits Byzantine
behavior. Let 0,0,1 be the clock values of Py, P, P, respectively, in the first configuration of E. In the
first pulse P4 sends clock value 1 to P, and P; and clock value 0 to P,. Thus, P, receives the clock values
vector 0,0,1,1, P, receives 0,0,1,0 and P3 0,0,1,1. P; is the only processor that finds n— f = 3 processors
with the same clock value (namely, the clock value 0) and increments its clock value by one (to be 1). At
the same time, P; and P; find two clock values with value 1 and two with value 0 and assign 0 to their
clocks. Hence, a configuration with clock values 0,1,0 for P, P, P3, respectively, is obtained. P continue
and sends the clock values 1,1,0 to Py, Py, Ps, respectively. Py receives the clock values vector 0,1,0,1, P,
receives 0,1,0,1 and P receives 0,1,0,0. Similarly, P is the only processor that finds n— f =3 processors
with the same clock value and assigns 1 to its clock while P; and P, assign 0. We reach a configuration
with clock values 0,0,1 for P, Py, P; which are identical to the clock values in the first configuration.
Therefore, an infinite execution in which nonfaulty processors never agree on their clock values is possible.

To overcome the above problem we use coin tosses. In a pulse in which a nonfaulty processor with clock
value 0 receives n — f clock values with value 0 the processor tosses a coin and decides whether to assign
0 or 1 to its clock. This leads to a possible scenario (that has some probability of occurring) in which the
coin toss results cause all the nonfaulty processors to simultaneously assign 1 to their clocks.

01 when pulse occurs:

02 broadcast clock;

03 collect clock values until (14 p)(d + €) time has elapsed on the physical clock
04 if |{j|clock; = clock;}| < n — f then (*case (1)*)

05 {clock; := 0; last_increment; := false}

06 else (*case (2)*) E

07 if clock; # 0 then (*case (2.1)*)

08 {clock; := (clock; + 1) mod M.; last_increment; := true}
09 else (*case (2.2)¥)

10 _ if last_increment; = true then (*case (2.2.1)*) clock; := 1
i else (*case 2.2.2*) clock; := toss(0,1)

12 if clock; = 1 then last_increment; := frue

13 else last_increment; := false

Figure 1: The Synchronous Protocol for P;

3.1 Correctness Proof of the Synchronous Protocol

Throughout the proof we say that a processor P; increments its clock by 1 in a certain pulse, if P; assigns
last_increment := true during this pulse. Otherwise, we say that P; assigns 0 to clock;.

Lemma 3.1 If nonfaulty processors P; and P; increment their clocks by 1 during some pulse P, then
immediately after P, clock; = clock;.

Proof: Assume towards contradiction that clock; = (z+1) mod M;. # clock; = (y+1) mod M. following
P. Hence, during P, P; finds at least n— f clock values that are equal to z. At least n— 2f of them belong
to nonfaulty processors. Thus, P; also receives n — 2f clock values that are equal to z. Hence, P; receives
at most n — (n — 2f) = 2f clock values that are equal to y. Since n > 3f, it holds that n — f > 2f, which
contradicts the possibility of P; receiving at least n — f clock values that are equal to y. u

5

Lemma 3.1 implies in a straightforward manner the correctness of the next two corollaries.

Corollary 3.2 After every pulse, the set of clock values of the nonfaulty processors contains at most two
elements. In case there are such two values, one of them is 0.

Corollary 3.3 If during a pulse P a nonfaulty processor P increments its clock value by 1 and the result
is 0, then immediately following P the clock values of all the nonfaulty processors-are 0.

Claim 3.4 If during a pulse P that follows the first pulse, a nonfaulty processor P increments its clock to
be 1 without tossing a coin, then just before P all the nonfaulty processors’ clock values were 0.

Proof: The variable last_increment is assigned during every pulse. Thus, since P follows the first pulse,
P indeed increments during Q, the pulse before P. Thus by Lemma 3.1 all the nonfaulty processors have
clock values 0 after Q@ and before P. |

The next theorem uses the scheduler-luck game of [DIM-91, DIM-95] to analyze the randomized pro-
tocol. The scheduler-luck game has two competitors, scheduler (adversary) and luck. The goal of the
scheduler is to prevent the protocol from reaching a safe configuration while the goal of luck is to help the
protocol reach a safe configuration. For the synchronous protocol a configuration is safe if for all nonfaulty
processors, the logical clocks are equal and last_increment is true. For our system the scheduler chooses
the message delays and clock drifts during the execution (within the predefined limitations). Each time
the processor, activated by the scheduler, tosses a coin, luck may intervene and determine the result of
the coin toss. It is proved in [DIM-91, DIM-95] that if, starting with any possible configuration e, luck
has a strategy to win the scheduler-luck game within 7 interventions and expected time ¢, then the system
reaches a safe configuration within expected time ¢ - 2. The main observation used for this proof is the
fact that if a coin toss result differs from the desired result (according to luck stra,tegy) a configuration is
reached from which a new game can begin.

Theorem 3.5 In. expected M. - 22"~1) pulses, the system reaches a configuration in which the value of
every nonfaulty processor’s clock is 1.

Proof: The proof is by the use of Lemma 1 of [DIM-91] (Theorem 5 of [DIM-95]). We present a strategy
for luck to win the scheduler-luck game with 2(n — f) interventions and within M, + 27 time. The strategy
of luck is (1) wait for the first pulse to elapse. Thereafter, (2) luck waits till a pulse P in which a nonfaulty
processor with clock value 0 receives n— f clock values that are 0. This occurs within the next M. pulses (if
it does not occur by then, there is at least one nonfaulty processor that does not assign 0 to its clock during
M. successive pulses, which is impossible). In case (2.1) during this pulse all the nonfaulty processors are
either tossing a coin or assigning 1 without tossing. Then luck intervenes at most n — f times and fixes the
coin toss results of all the nonfaulty processors to be 1. Otherwise, (2.2) if there is a nonfaulty processor
P that is neither about to toss a coin nor about to assign 1 without tossing, then luck intervenes and fixes
all the coin toss results (less than n — f) to be 0. Note that before P, P’s clock is not equal to 0. Thus, by
Claim 3.4 no processor assigns 1 without tossing a coin. By Lemma 3.1 and the fact that some nonfaulty
processor tosses a coin during P, it holds that following P the clock values of all the nonfaulty processors
are 0. Therefore, in the next pulse case (2.1) is reached and luck could intervene and fix at most n — f
coin toss results to ensure that the desired global state is reached. [

By Theorem 3.5 the system reaches a configuration in which the value of every nonfaulty processor’s
clock is 1, in expected time M, - 22(*=f), It is easy to see that in any successive pulse, all the nonfaulty
processors have the same clock value. Thus the clock agreement requirement holds with v = 0. Since the
clocks of the nonfaulty processors are incremented by 1 in every pulse and the pulses are constant time
apart, the clock validity requirement also holds. Note that the clock value could be multiplied by = (if =
is known), the time difference between two successive pulses, in order to yield a clock value that reflects
real time. Otherwise, the value of a of the clock validity requirement encodes 1/7.

6

3.2 Accelerating the Protocol

If M, = 2%, our protocol converges after expected 264 - 22(n=f) synchronization pulses. Certainly, because
of this time complexity this protocol cannot be used in practice. However, if Mj, n, and f are all small?
then the expected number of pulses required is reasonably small. For instance, if Mj. =2, n =4, and
f = 1, then the expected number of pulses is 128. We use the above observation to-accelerate our protocol.
We achieve synchronization of clock values in the range of M. = 2% values within expected number of
pulses that is less than 381 - 22(»=f). (For M. = 2'°, synchronization occurs within expected number of
pulses that is less than 58 - 22(n—f) pulses).

We define the Chinese remainder counter by the use of the Chinese remainder theorem, which appears
in [Kn-81] p. 270:

Theorem 3.6 Let mi, m2, .., m, be positive integers that are relatively pm’mé in pairs, i.e.,
ged(mj,mi)=1 when j # k. Let m = mymg---m,, and let a, uq, ug,...,u, be integers. Then there is
ezactly one integer u that satisfies the conditionsa <u<a+m, andu = uj(modulo m;) for 1 < j < r.

We use the Theorem for the case a = 0 and m > Mj.. Let 2,3,5,...,p; be the series of prime numbers
up to the j-th prime such that 2-3-5-...-pj—1 < My, <2-3-5-...-pj. We run j parallel versions
of our protocol. The i-th version runs the protocol with Mj. = p;. Each message carries the value of j
clocks, one clock value for each version. The computation of the new clock value of some version ¢ uses
the values received for this particular version and is independent from the computation of all the other
versions. Thus, the i-th version converges within expected p; .22(n=1) pulses. Therefore, the expected time
for all the versions to be synchronized is less than (py + p2 + ---+ pj) - 22(n=f), This is an upper bound
on the expectation since it corresponds to a scenario in which version 7 starts to synchronize after every
version k < i is already synchronized.

Now we apply the Chinese remainder theorem to show that every combination of those values is mapped
to one and only one number in the range 0 to 2-3-5---p;. A well-known technique could be used in order
to convert such a representation to its mapping (e.g., by Garner methods, c.f. p. 274 [Kn-81)).

The Chinese remainder theorem could be used for other implementations of distributed counters based
on the number presentation method suggested in [ST-67]. One possible use is as a memory and communica-
tion efficient distributed counter. Let DC be a distributed counter that is maintained by a set of processors
Py, P,,..., P; that are triggered by a common pulse. P; increments the counter mod p; in every trigger.
P; does not need to store the entire bits of the clock or to send messages to indicate the carry (when its
counter wraps around). Thus, when the counter is incremented no communication between processors is
needed. Only when the value of the counter is to be scanned is communication required.

4 Semi-synchronous Protocol

In this section we drop the assumption of common pulses. We present a self-stabilizing randomized protocol
for semi-synchronous systems. Due to space constraints, the formal description of the protocol and the full
correctness proof are excluded from this section.

24 is reasonable to think of 7 and f as being small when 2 single processor can efficiently compute a task and additional
processors are added only to ensure reliability. Let the reliability be f/(n + f), the ratio of the number of faulty processors
to the total number of processors. To reach a reliability of 0.25, the number of processors needed (and thus, in general terms,
the blowup in the hardware and cost) is four. To improve the reliability to 2/7=0.28 the blowup would be 7. Asymptotically,
we need an infinite blowup to reach reliability of 1/3. Thus, most devices would use a relatively small number of processors
for which our protocol stabilizes in a relatively short time.

Our protocol uses the fault-tolerant averaging function first introduced in [DL+-86] for solving ap-
proximate agreement and later used for clock synchronization in [WL-88]. Given a multiset of values, a
processor applies the function by discarding the f highest and f lowest values and then taking the midpoint
of the remaining values. It has been shown that this function, when used in the context of the protocols
of [DL+-86, WL-88], approximately halves the range of values held by the nonfaulty processors.

In our situation, with bounded clocks, the notions of “highest” and “lowest” must be appropriately
modified. But the real difficulty in directly applying the previous result is that the analysis showing the
range is cut in half depends on all nonfaulty processors working with approximately the same multisets at
each “round”. The multisets can differ arbitrarily in the values corresponding to the faulty processors, but
the values corresponding to nonfaulty processors must be close to the same (allowing for error introduced
by clock drift and uncertain message delays). This “round” structure can be achieved because the actions
of the processors are roughly synchronized in time in the [WL-88] protocols, due to the assumption of
initial synchronization or of distinguished initial states.

Since our protocol is self-stabilizing, it cannot rely on either of those assumptions. Thus using the fault-
tolerant averaging function in the obvious manner, with the processors starting with arbitrary information
and collecting clock values at arbitrary times, would not ensure that the function is applied at the processors
in rounds. For instance, P could apply the function to a multiset M, then subsequently Q could apply the
function to a multiset M’ that reflects P’s new value instead of P’s old value.

To achieve some sort of approximate rounds for applying the fault-tolerant averaging function, we first
use randomization to bring all the clock values of the nonfaulty processors close to each other. Once this
is achieved, all the nonfaulty processors collect (approximately) the same multisets from all the nonfaulty
processors. In this stage the midpoint averaging function can be shown (cf. [WL-88]) to approximately
halve the nonfaulty clock values, thus overcoming the ongoing effects of clock drift and uncertainty of
message delay.

We now describe the protocol. A processor P; has two synchronization procedures. The first is called
the averaging procedure and the second is the jumping procedure. The averaging procedure is executed
when the value of clock; is in a range greater than 0 and smaller than § and T}, time has elapsed since the
previous time that clock; had a value in this range. The jumping procedure is executed when T; time has
elapsed since the previous execution of the jumping procedure and P; is not currently in the range dedicated
for executing the averaging function. P; measures T, and T; using its physical clock. Roughly speaking,
the jumping procedure causes the clocks of the nonfaulty processors to be within a small range. Then the
averaging procedure keeps the clocks of the nonfaulty processors in a small range by approximately halving
the range each time the clock values wrap around.

Both the synchronization procedures of processor P; start with a request for clock values. During the
execution of the averaging procedure, a processor measures 2(d + € 4 §) time in order to make sure that
all the requests for clock values arrive at their destinations and the responses return before it proceeds to
decide on a new clock value. Thus each execution of the averaging procedure takes some period of time.
We define the symmetric clock of clock; to be clock; + M)./2 (mod M;.). In both procedures, if P; finds
n — f clock values within a small range § from clock;, then P; eliminates f values from each side of the
symmetric clock value®. Then, in the jumping procedure, P; chooses one of the clock values at random
from the reduced clock values list, while in the averaging procedure, P; chooses the midpoint of the reduced
clock values list. In both procedures, if less than n— f processors are found within é from clock;, P: chooses
randomly one of the clock values.

3For instance, if the collected values are 2,3,10,11, the symmetric clock value is 7 and f = 1, then 3 and 10 are eliminated.

4.1 Correctness Proof Sketch of the Semi-synchronous Protocol

A period of time isa jumping period if no nonfaulty processor executes the averaging procedure during this
period. We choose T, to be 2(n — f)(5T; + d + €)(1 + p)?. The next lemma proves that the above choice
yields the existence of a period of length 5T}(1 4+ p) that is a jumping period.

Lemma 4.1 Every T, time there is a jumping period that is at least 5T;(1 + p) long.

Proof: A processor measures time by the use of its physical clock, whose drift rate from real time is at
most p. Thus, if a processor measures a period of time T" on its physical clock, then the real time elapsed
during the measurement is at least T'/(1 + p) and at most T'(1 + p). By the way T, is chosen, in every
period of length 2(n— f)(5T; +d+€+8)(1+p)?/(1+ p) = 2(n— f)(5T;+d+ €+ 8)(1+ p), every nonfaulty
processor executes the averaging function at most once. A processor measures 2(d + € + §) time in order
to make sure that the requests for clock values arrive at their destinations and the responses arrive before
it decides on a new clock value. Thus, the time that the averaging function is executed by each processor
in a period of 2(n — f)(5T; + d + € + 6)(1 + p) is no more than 2(d + € + 6)(1 + p). Hence, the total
time of averaging of all the processors during a period of 2(n — f)(5T; + d + €+ §)(1 4+ p) is no more than
(n— f)2(d+ €+ 8)(1+ p). Therefore, the total non averaging time is at least 2(n — f)(5T; + d+ €+ 8)(1+
p)—(n— f)2(d+ e+ 6)(1+ p) = 2(n— f)5T;(1 + p). By the pigeon hole principle at least one jumping
period is of length 2(n — f)5T;(1 + p)/(n— f + 1) > 5T;(1 + p). m

A safe configuration is a system configuration in which the nonfaulty processors’ clocks are within §/8
of each other. Moreover, in case a processor is in the middle of collecting clock values then all the clock
values in transit sent by nonfaulty processors are within this range too.

We use the following assumptions in our correctness proof:

Assumption 1: (1 + p)? < 6/5, thus p < 0.095.
Assumption 2: (n — f)e+ 2T;(1+ p)p < §/8.

Lemma 4.2 During any jumping period of length 5T;(1+ p), with probability at least 1/ n8(n=1), the system
reaches a safe configuration.

Sketch of proof: We prove the lemma by presenting a sequence of random choice results, that forces
the system to reach a configuration in which the clocks of all the nonfaulty processors are less than §/8 .
apart. This sequence of random choice results has probability of at least 1/ n8(n=5) to occur. Let ¢ be the
configuration at the beginning of the jumping period.

Without loss of generality we assume that the number of faulty processors f is the maximal possible*
that does not violate the inequality » > 3f. Let ¢ be the first configuration in a choosing period. For
every nonfaulty processor P, luck counts the number of other nonfaulty processors that have clocks within
T, = § + 4(Tj(p + p*)) + € of P’s clock in the configuration c. Each nonfaulty processor that has at least
n — 2f — 1 such surrounding clock values is called an anchor.

We claim that all the anchor processors are at most 27, apart. Assume towards contradiction that there
are two nonfaulty anchor processors, P and @, such that their clock values are more than 27T, apart. Thus,
P is surrounded by n — 2f — 1 nonfaulty processors and @ is surrounded by n — 2f — 1 different nonfaulty

*In case there are fewer faulty processors, one could assume that some of the nonfaulty processors “only behave” like
nonfaulty processors.

processors. Therefore, the total number of nonfaulty processors is at least 2(n — 2f) = 2n — 4f > n — f,
contradiction.

Note that it is possible that no anchor processor exists. In this case luck chooses one nonfaulty processor
to be an anchor processor.

Then luck chooses a single anchor processor A out of the anchor processors.

Until every nonfaulty processor executes the jump procedure twice luck uses the following strategy:
Every time a processor, P;, chooses a clock value and the value of the clock of A is a possible choice (i.e.,
either P; does not find n — f within 6 range or A is in the reduced clock values list), this value is chosen;
otherwise the value of clock; is not changed. Let ¢; be the first configuration reached from ¢ after each
processor executes the jump procedure at least twice with results according to the strategy of luck. Let E;
be the execution that starts with ¢ and ends with ¢;. Since in a jumping period every nonfaulty processor
chooses a clock value at least once in every period of length T;(1 + p), ¢; occurs at most 2T;(1 + p) time
after c.

We now show that in ¢; all the nonfaulty processors are within 27, + 2T;(1 + p)2p of each other. We
first show that any nonanchor processor, P, assigns the value of A’s clock to P’s clock either in the first
execution of the jump procedure or in the second one. Every processor collects the clock values during
every execution of the jump procedure. In particular a nonanchor processor, P;, receives the value of the
clock of A before the second execution of the jump procedure. Next we show that, in the second execution
of the jump procedure P; can choose the value of A’s clock.

The choice of P; is restricted to a subset of the clock values that P; read, only if P; finds n — f clock
values within é range of clock;. Since P; is a nonanchor processor it holds in ¢; that there are less than
n — f processors within 6 range of clock;. Moreover, no nonfaulty processor can assign a clock value within
¢ range of clock; since: (1) Every nonfaulty processor Py that changes its clock value by the use of the
jump procedure assigns the clock value of A (with up to € range from the clock of 4). (2) Every nonfaulty
processor P that does not change its clock value by the use of the jump procedure can have a rate of drift
from the clock of PJ of at most 2p. Thus, the difference between clock; and clocky. can be shorten by at
most 2T5(1 + p)2p = 4(Tj(p + p*)). Thus, if P, was more than T, = 6 + 4(T5(p + p?)) + € apart from P;
in ¢ then P; cannot consider Py to have a clock in § range from clock; during E; (unless P; assigns clock;
by the value of the clock of A).

This proves that in ¢; all the nonanchor processors are within € + 4T}p from A’s clock. The anchor
processors that do not assign the clock value of A to their clock during E; were at most 2T, apart in c,
thus they are at most 27, + 2T;(1 + p)2p apart in ¢;.

The fact that all the nonfaulty processors are within a small range of each other is used to define a
new anchor processor A’. A’ is the nonfaulty processor left after removing f nonfaulty processors with the
highest clock values (mod M).) and f nonfaulty processors with the smallest values (mod M;).

;From ¢; and until every processor executes the jump procedure at least twice, luck continues as follows:
Any processor P; that is in the process of collecting clock values in ¢; does not change clock; in the first
execution of the jump procedure. For any other execution of the jump function, luck intervenes to fix the
result to be the clock of A’ or a clock of a processor that has already set its clock to the value of A”’s clock
since ¢;. We have to prove that the above is a possible result of the jump function. This is obvious when
the processor does not find n — f processors within é from its clock, since the choice is not restricted. It
is also clear for the first set of processors that execute the jump procedure and use the clock values in ¢;
as the base for the decision on the new clock value. Moreover, since luck intervenes and fixes all those
results to be the value of the clock of A’, the reduced list of every processor that uses the new clock values
includes either the clock of A’ or a clock of a processor that assigned its clock by the clock of A'.

Hence, in the first configuration, c;, that follows the first two executions of the jump function of all the
processors following c;, all the nonfaulty processors are within (n — f)e+ 27;(1+ p)p of each other, which,
by assumption 2, is less than §/8.

10

Following ¢, any processor that is waiting for answers in the process of collecting clocks does not change
its clock value. Thus, (d + €)(1 + p) time after ¢, a safe configuration is reached.

The length of the execution is 2T;(1 + p) until ¢; is reached, 2T;(1 + p) from ¢; to c; and additional
(d + €)(1 + p) until a safe configuration is reached. Thus, a safe configuration is reached following (47; +
d+€)(1+ p) < 5T;(1 + p) from ¢. By Assumption 1, 5T;(1 + p) < 6T;/(1 4 p). Thus any processor could
choose at most six times in such a range. Thus the total number of interventions is 6(n — f). [

Lemma 4.3 In any configuration of any ezecution that starts with a safe configuration, the clock values
of all the nonfaulty processors are within at most §/2 of each other.

The main observation made for the proof of the above lemma is that starting in a safe configuration
every processor that either executes the jumping or the averaging procedure finds n — f clock values within
§ from its clock value. Thus, the new clock value chosen when jumping or averaging is in the range of clock
values of the nonfaulty processors. The averaging procedure approximately halves the range of the clock
values of the nonfaulty processors whenever they pass the zero clock value.

Theorem 4.4 In ezpected O(T,n®"~f)) time the system stabilizes.

5 Concluding Remarks

Extensive research has been done to find efficient clock synchronization protocols in the presence of Byzan-
tine faults. In this work we considered a more severe (and realistic) model of faults, i.e., one that takes
into account transient faults as well as Byzantine faults. When arbitrary corruption of state is possible,
as is often the case with transient faults, it is no longer reasonable to approximate unbounded clocks with
bounded clocks, no matter how large. Consequently, clocks that can take on only a bounded number of
values (and wrap around when appropriate) have been assumed in this paper. We presented two random-
ized self-stabilizing protocols for synchronizing bounded clocks in the presence of f Byzantine processor
failures, where n > 3f.

We believe that our observations and definitions for the types of faults to be considered and the type
of clocks (namely, bounded) reflect reality and open new directions for research. Protocols designed under
our fault tolerance model are more robust than existing clock synchronization protocols. Therefore, such

protocols might be preferred by the system implementer over protocols that cope with only Byzantine
faults.

Acknowledgment: Many thanks to Brian Coan, Injong Rhee and Swami Natarajan for helpful discus-
sions. :

11

References

[Dij-74] E. W. Dijkstra, “Self stabilizing systems in spite of distributed control,” Communication of the
ACM, vol. 17, 1974, pp. 643-644.

[DHS-86] D. Dolev, J. Y. Halpern, and H. R. Strong, “On the possibility and impossibility of achieving
clock synchronization,” Journal of Computer and Systems Science, vol. 32, no. 2, 1986, pp. 230-250.

[DIM-91] S. Dolev, A. Israeli and S. Moran, “Uniform dynamic self stabilizing leader election,” Proc. of
the 5th International Workshop on Distributed Algorithms, 1991, pp. 167-180.

[DIM-95] S. Dolev, A. Israeli, and S. Moran, “Analyzing Expected Time by Scheduler-Luck Games,” IEEE
Transactions on Software Engineering, vol. 21, no. 5, May 1995.

[DL+-86] D. Dolev, N. A. Lynch, S. S. Pinter, E. W. Stark, and W. E. Weihl, “Reaching approximate
agreement in the presence of faults,” Journal of the ACM, vol. 33, 1986, pp. 499-516.

[DW-93] S. Dolev and J. L. Welch, “Wait-free clock synchronization,” Proc. of the Twelfth ACM Symp.
on Principles of Distributed Computing, 1993, pp. 97-108.

[GP-93] A. S. Gopal and K. J. Perry, “Unifying self-stabilization And fault-tolerance,” Proc. of the Twelfth
ACM Symp. on Principles of Distributed Computing, 1993, pp. 195-206.

[HS+-84] J. Halpern, B. Simons, R. Strong, and D. Dolev, “Fault-tolerant clock synchronization,” Proc.
of the Third ACM Symp. on Principles of Distributed Computing, 1984, pp. 89-102.

[Kn-81] D. E. Knuth, The art of computer programming, Vol. 2, 2nd edlthIl Addlson-WesIey, 1981.

[LM-85] L. Lamport and P. M. Melliar-Smith, “Synchronizing clocks in the presence of faults,” Journal of
the ACM, vol. 32, no. 1, 1985, pp. 1-36.

[LSP-82] L. Lamport, R. Shostak and M. Pease, “The Byzantine generals problem,” ACM Trans. on Prog.
Lang. and Sys., vol. 4, no. 3, July 1982, 382-401.

[MS-85] S. Mahaney and F. Schneider, “Inexact agreement: accuracy, precision and graceful degradation,”
Proc. of the Fourth ACM Symp. on Principles of Distributed Computing,-1985, pp. 237-249.

[RSB-90] P. Ramanathan, K. G. Shin, and R. W. Butler, “Fault-tolerant clock synchronization in dis-
tributed systems,” IEEE Computer, October, 1990, pp. 33-42.

[ST-87] T. K. Srikanth and S. Toueg, “Optimal clock synchronization,” Journal of the ACM, vol. 34, no.
3, 1987, pp. 626-645.

[ST-67] S. Szabo, and R. I. Tanaka, Residue arithmetic and its applications to computer technology,
McGraw-Hill, 1967.

[WL-88] J.L. Welch and N. Lynch, “A new fault-tolerant algorithm for clock synchronization,” Information
and Computation, vol. 77, no. 1, 1988, pp. 1-36.

12

Possibility and Impossibility Results for Self-Stabilizing Phase Clocks on
ot Synchronous Rings '

Chengdian Lin Janos Simon

Department of Computer Science
University of Chicago

Abstract

We consider the problem of obtaining self-stabilizing algorithms for finite phase clocks on uniform
synchronous rings. In such a system, every processor is identical and has a local clock. A self-stabilizing
protocol guarantees that all clocks will eventually have the same value regardless their initial values, and
thereafter, each processor increments its clock by one in every step. We show that there is no solution to
this problem if the processors are finite automata. On the other hand, we present such a protocol which
works for any rings of odd size and for rings of size 2p, where p is a prime. The idea yields a protocol
of O(+/n) states per processor for arbitrary rings. This improves the previous result of O(n) states.

1 Introduction

We study self-stabilizing clocks in a synchronous setting. In such a system, there is a collection of identical
processors, each -with an internal, local, bounded clock. Computation proceeds synchronously: at discrete
points in time every processor receives an external, global ‘clock pulse’. Ideally, all local clocks — which
from now on we will often call phase clocks, will have the same value, and will change at every global
clock pulse. This is accomplished by a local protocol, which, besides the global pulse, may also use the
state of the processor, as well as the states of adjacent processors. This is an interesting and important
problem (see the references for motivation and applications.) Unless otherwise-stated, we shall assume in
this abstract that the processors are connected in a ring with a sense of direction. The task is to design a
self-stabilizing protocol that guarantees that eventually all the phase clocks have the same value, regardless
of the initial configuration of the system, and from that point on, they all change, in unison, at every global
pulse. This Phase Clock problem can be specialized by specifying the bound on the clock (e.g. only finitely
many values) and a bound on the number of states of the processor.

It is easy to see that the problem can be reduced to leader election: once a leader is elected, it can impose
its clock to its neighbors, who impose it to theirs, until all clocks are synchronized. Part of the interest of
the question is that it is simpler than leader election. There are deterministic phase clock algorithms for
synchronous anonymous rings. But there is no deterministic leader election for synchronous anonymous
rings (consider a ring configuration in which every processor has the same state.) The question is whether
there exist solutions where each processor uses only finite memory — i.e. a ring of finite automata. In this
paper, we show that there is no finite memory self-stabilizing solution to Phase Clock problem, either for
unidirectional or bi-directional rings. On the other hand, we also show that such solution exists for many
ring sizes.

We briefly review previous work on phase clocks. In [3], Gouda and Herman presented a simple and

elegant self-stabilizing clock unison protocol for a general graph: at each clock pulse the processor sets its
local clock to 1+MAX{clocks of its neighbors}. Unfortunately this protocol requires unbounded clocks, so
the size of each processor must be unbounded. The algorithm was strengthened by Arora, Dolev and Gouda
in [1], where it is shown that if the number of processors n in the system is known, then an O(n) clock size
is sufficient: simply use MIN instead of MAX, and addition mod n. They also show that the scheme does
not work if the modulus is too small. Herman and Ghosh [4] also presented a simple randomized protocol
for processors that are finite automata. Their algorithm, as presented, is slow to stabilize: the convergence
span (the expected time to attain a stable configuration in the worst case) is not bounded by a polynomial.
In a ring with orientation their algorithm can be modified to run in expected polynomial time. Yet [10]
has presented an algorithm for odd size rings.

In this paper, we study deterministic protocols for finite phase clocks. We first show that any de-
terministic self-stabilizing Phase Clock protocol for a ring of size n, where n an integer of some special
form, has at least Q({/log n) states per processor. We then present a new deterministic strategy, that we
call Firing Generals, which allows us to derive efficient protocols for rings of finite automata. We obtain
self-stabilizing binary-clock protocols for rings of odd size and of size 2p, where p is a prime. The technique
can be extended to rings of length odd or 2p* for k < 2. The idea also yields a deterministic protocol of
O(+/n) states for arbitrary size rings (compared to the O(n) states protocol in [1].) We also present a easy
lower bound on protocol speed, that it, any self-stabilizing protocol has convergence span of Q(D), where
D is the diameter of the graph.

2 Model and Impossibility Results

In a k-clock system, each processor has a state of form (I,c), where I € L is the label and ¢ € C =
{0,1,---,k — 1} is the clock value. All states in the system form a (global) configuration. Let P be a
protocol, in a transition of P at configuration 7, every processor P in the system simultaneously executes
one step of-P which is a function § of P’s old state and neighbors’ states, thereby resulting the next state
of P and the next (global) configuration §(7). A computation of the system is an infinite sequence of
configurations resulting from an infinite sequence of transitions.

A Phase Clock system is a k-clock system for some finite integer k, and it satisfies the following two
properties:

1. [Unison] There is a time ¢ such that if all clocks in the system have the same value as ¢ at time ¢,
then for any ¢ > 0, all clocks at time ¢ + ¢ will have the same value as ¢+ (mod k).

2. [Self-Stabilization] From any initial configuration, there exists a finite ¢ such that the system will
reach Unison at time t. ;

Definition. Convergence Span is the maximum number of transitions needed to reach a Unison
configuration from an arbitrary configuration. For a self-stabilizing protocol P, we denote its Convergence
Span by CS(P).

In the following, we will show that there is no constant space self-stabilizing protocol which solves Phase
Clock problem deterministically. In particular, we show that: any self-stabilizing Phase Clock protocol for
a ring of size n, where n an integer of some special form, has at least Q(/logn) states per processor.

2.1 Lower Bound for Unidirectional Rings

Lemma 1. Given any deterministic protocol P for synchronous uniform unidirectional ring. Let @
(|Q] = m) be the state set of each processor under P. Then there exists a periodic sequence of states
50,81, +»Sk-1 Where s; € @ and k < m?, such that

6(siy8i41) = Siy2 Wwhere addition is modulo &
Proof. Let i be some state in Q. Set t; = tp. For 7 > 1, define #; as

i = 6{tesbi-a) (1)

There are at most m? distinct pairs on the right hand side of (1). Thus there exist u,v (both between 0
and m? — 1) such that (¢,%u41) = (fo,tu41). Set E=v—u, 5o =ty and 8; = tyy; (for1<i<k-1),and
we are done.]

Definition. Let v = (ag,a1,-*,an—1) be a configuration for a ring of size n. A configuration 7’ is an
i-shift of v (0 <i< ﬂ.), if 71 = (ai?ai-i-la trry0n-1,40,01," " "}ai—l)'

It is know from number theory that for any integer 7, lem(1,2,...,7) < €27 (see e.g. [11].)

Theorem 1. There are infinitely many n such that, any deterministic protocol P that solves phase clock
problem for synchronous uniform unidirectional rings of size n must have at least Q(1/logn) states per
Processor.

Proof. For any given integer r; let n = lem(1,2,...,7). We want to show that P uses at least /7 states
per processor for ring of size n. Suppose not, then P uses m < /T states per processor. By Lemma 1,
there is a periodic sequence g, 81, -,Sk—1 of length k < m?2 < r. Let Ysup = (50,81, ,5%k-1) be a
sub-configuration. Since k divides n, we define a ring configuration i

= (7subs Ysubs* * 'a'Tsub)

Now it is easy to see that §(7) is a 1-shift of 7. If ¥4 has two or more different clock values, then any
configuration after 4 will have two or more different clock values and the unison will never be reached. If
~sub Tepresents a single clock value, this clock value will never change after v, but then the system is not
a clock.

Therefore P must use at least /7 = Q(+/Iog n) states in each processor for this type of special n. ®

Corollary 1. There is no constant space deterministic self-stabilizing protocol that solves the Phase
Clock problem for unidirectional uniform rings.

2.2 Lower Bound for Bi-directional Rings

We proved the existence of periodic sequences on pairs in the unidirectional case. We are going to prove
that a similar periodic sequence on triples also exists in the bi-directional case.

Lemma 2. Given any deterministic protocol P for synchronous uniform bi-directional ring. Let @
(]Q| = m) be the state set of each processor under P. Then there exists a periodic sequence of states
S0, 81, -+, Sk—1 Where s; € Q and k < m?, such that

86(8i—1,8i,5i41) = Si+2 where addition is modulo k

Proof. Let {y be some statein). Set t; = #; = to. For i > 2, define #; as
: ti = 6(ti-a,ti2,ti_1) (2)

There are at most m? distinct triples on the right hand side of (2). Thus there exist %, (both between
0 and m® — 1) such that (fu,fut1,tut2) = (fortut1,torz). Set k = v —u, so = t, and s; = tyy; (for
1< i< k-1),and we are done. B

Theorem 2. There are infinitely many n such that, any deterministic protocol P solves phase clock
problem for synchronous uniform bi-directional rings of size » must have at least Q(¥/logn) states per
Processor.

Proof. The proofis basically the same as for Theorem 1. For any given integer 7, let n = lem(1,2, ..., 7).
We want to show that P uses at least /7 states per processor for ring of size n. Suppose not, then P
uses m < /T states per processor. By Lemma 2, there is a periodic sequence sq,s1,- -+, 8k of length
k< m® < r. Let Ysup = (80,81, 8k—1) be a sub-configuration. Since k divides n, we define a ring
configuration

T = ('Tsuba Youbs* > *s Youb)

Thus §(7y) is a 2-shift of y. The remainder of proof is the same as that of Theorem 1. m

Corollary 2. There is no constant space deterministic self-stabilizing protocol that solves the Phase
Clock problem for bi-directional uniform rings.

The above lower bounds do not hold for all values of n. In the following section, we present a constant
space deterministic self-stabilizing protocol for binary clocks on rings of certain size (odd and 2p.)

3 The Firing Generals Protocol

3.1 The Basic Protocol: Informal Outline

We assume that the ring has a sense of orientation. Processors will check their neighbors: as long as the
neighbors have the same phase clock value, the local clock is simply incremented (mod 2). A problem
arises when a processor discovers that its neighbor has a different phase clock. We call an army or a
segment a maximal group of consecutive members (processors) with the same clock. The two members at
two ends are called generals, one is the front-general (FG) and the other is the rear-general (RG.) Other
members of an army are called soldiers.

We need to merge the processors into a single segment. We will do this by requiring that armies fight,
and eventually all but one disappear. Unlike most real warfare, we’ll have the generals do all the fighting.

A general can be in one of two modes Firing or Quiet. A soldier should be in Quiet mode only (except
in some illegal initial configurations.) At the border of two armies, there should be at most one firing
general. Firing generals conquer quiet generals and soldiers, enlarging their armies.

As usual, there are two problems: generals should eventually fire, but no two adjacent generals (in
different armies) should fire. We break the symmetry by allowing general to actually fire only when its
local clock is 1. Since two adjacent enemy generals have different local clocks, exactly one of them will fire,
and the other becomes Quiet.

If the front and rear generals of an army could communicate instantaneously with each other, the
protocol above would suffice. The problem is to coordinate them, to make sure that both generals of an

4

army are firing, or both generals are quiet. We call an army where both generals are in Firing mode a
firing army. A firing army will expand by conquering enemies at its two ends. It will increase its size and
remain a firing army at next moment. This continues until the number of armies decreases. If a protocol
guarantees the existence of a firing army, then the ring will converge to a single army.

In reality, two generals are apart, and could be in different states. Then one of them may expand, while
the other is quiet, and is being conquered by its neighbor. To prevent this, two generals constantly check
that they are in the same state. More precisely, a Firing general sends 2 bullet to the other general in the
same army, while a Quiet general sends a Stop-Firing signal. Upon receiving a bullet, a Firing general will
conquer an enemy and the newly surrendered general will become the new firing general. A Firing general
becomes Quiet if instead a Stop-Firing signal is received.

If an army is not firing, then both generals will be Quiet soon (after at most the size of army ticks.)
For convenience, we call a Quiet mode general Peace general if the neighbor enemy general is also Quiet.
If both generals of an army A are Peace generals, then A will run a local synchronous protocol to let
both generals of A enter the Firing mode at the same time. This protocol is essentially a firing squad
synchronization protocol, hence the name of the algorithm.

In order to achieve the synchronization of two generals of an army A, we ask A to locate its center
(two centers if the size of A is even.) By doing this, the rear Peace general constantly sends Request signal
to the front general. When the front Peace general receives a Request signal, the Center Locating protocol
is started. The front general marks itself as the center C initially, and sends Verify signals to its generals
and waits for signals to return. If two Verify signals are returned at different time, the marked center is
adjusted to right and the newly marked center will send Verify signals again. If two Verify signals are
returned at the same time, the marked center knows it is the real center and then broadcasts OK signals
to two generals. This guarantees ‘that the two generals will receive the OK signal at the same time, so they
enter the Firing mode at the same time. In the case of two generals at the border entering Firing mode
at the same time, they must have different clocks so we use our rule to break the symmetry by letting the
firing general with clock value 0 become Quiet at the next clock tick. 2

Once an army is firing we want to keep its firing status until the number of armies decreases. To
avoid an enemy general from becoming firing at the border, we ask a general to cancel the Center Locating
protocol (by sending a Stop-Firing signal) as soon as it is no longer a Peace general.

This strategy almost always works. Except for a very special case that we will discuss below, it
guarantees the existence of a firing army, and therefore the correctness of the protocol. The bad scenario
is that only F'G (or RG) of each army can enter Firing mode after the Center Locating protocol, because
the other general, i.e. RG (FG) cancels the Center Locating protocol too late. Notice that this will not
happen if there are only two armies, since both generals of an army enter the Firing mode at the same
time. If one general cancels the Center Locating protocol, the other general must cancel the protocol as
well. The problem is that there may an infinite chain of such restart/cancel moves that propagate along
the ring. We show that the initial conditions must be very special for this unlucky scenario to happen. In
particular, all armies must have the same size.

As a consequence, our protocol works for rings of odd size, and for rings of size 2p when p is prime,
because there must be an even number of identical length armies for the deadlock to occur, and this is
impossible for such ring sizes. Similar techniques, not covered in this abstract, extend the result to rings
of size 2pF for p prime and k a fixed exponent.

3.2 Basic Protocol: Details

Suppose that every soldier has a clock and a state, and it receives and sends signals. We consider the state
as having 5 components:

1. Clock: {0,1}
2. Status: {C,N}
3. Mode: {F,Q}

— = = =

4. Left Signal: {B, S, R, V,RV,K,N)}

—_— — — — —

5. Right Signal: {B,S,R,V ,RV,I{ N}

The first component is the binary clock component. The status component indicates whether a soldier
is a center of the army. The third component is to indicate a soldier’s mode, Firing or Quiet. The fourth
and fifth component contains the signal a soldier has. Signals travel inside an army either from left to right
or vise versa, and the they have the following meanings:

B is the Bullet.

S is the Stop-Firing signal.

R is the Request signal to ask for running the Center Locating protocol.

V is the Verz’fy signal sent from center to generals.

RV is the Returning Verify signal sent from generals to center.

K is the OK sigﬁa.l sent from center(s) to generals to let them enter the Firing mode.

N means no signal.

We use P; to denote the value in i-th component of processor P, and parentheses (a, b, ¢,d, e)p to denote
the whole state. We often denote P’s left neighbor by P', and P’s right neighbor by P’" We also use
[P}, P;, P[] to denote the P’s vicinity view of i-th component in three processors, and [P, [P}, P] (or [P, PT])
to denote the local view of two adjacent processors.

Definition. If two adjacent processors have different clocks ([P, P;] = [a,a]), then the left processor P*
is called a Front General (FG) and the right processor P is called 2 Rear General (RG.)

A processor P is a general if P is either a front general or a rear general, otherwise P is a soldier.

Definition. Assume P and P’ are generals:
1. Pis Firing if P is in the firing mode (P; = F), otherwise P is Quiet.
2. A firing general P is called a Conquering General if P’s clock is 1 ((1, N, F, *,*)p.)

3. A quiet general P (P') is called a Peace General if the adjacent enemy general P! (P) is also quiet,
that is (a,*,Q, *,%)p and (@, *, Q, *, *)pi.

Definition. An army .A is a maximal contiguous sequence of processors with the same clock.
Definition. If P, = C, then processor P is called a marked center (or center.)

Definition. Signals have ranks: 6,5,4,3,2,1,0 are the ranks for S,K,V,RV,R, B, N respectively. Let X,Y
be two signals of opposite directions, we say X kills Y if Rank(X) > Rank(Y).

Normally, signals are passed according to their directions within an army. By above definition, when
two signals (from left and right) of different ranks are received by a processor, the lower rank signal will
be killed.

Our protocol has eight rules. Rule R1 is for a singleton army. Rules R2 — R4 are for the border which
has firing general. Rules R5 — R8 are for Center Locating.

A rule is enabled if the processor changes its state after applying it. Rules have priorities, that is, Rule
I is applied before Rule J if I < J. So, at a pulse, a processor applies only one rule which is the first
enabled rule by the priorities.

R1 (Singleton Army Rule):

If a general is the only member in the army, it will reinitialize its state. This action also causes a
general to surrender if its clock is 0.

R1AO01: if [P}, P, P[] = [a,a,d] then
R1A02: (0,N,Q,N,N)r
R1A03: endif;

R2 (Conquering Rule):

Upon receiving a bullet B, a conquering general CG conquers the enemy general EG and EG becomes
the new firing general. Since processors move synchronously, EG makes its clock the same as CG’s clock
and becomes firing, while CG becomes quiet.

Procedure Action-Of-Losing-Front-General
R2AO01: if ([P}, P, P]]=[1,0,0]) and (1,%, F,*,B)p: then

R2A02: (0,N,F,B,N)p {also send B, see R4}
R2A03: endif; -

Procedure Action-Of-Winning-Rear-General _
R2BO01: if ([P}, P, P[] =[1,1,0]) and (1,, F,*,B)p then

R2B02: (O, N, Q,B, P)p {send B, receive P! from left}
R2B03: endif;

The code blocks for winning F'G and losing RG are symmetric.

R3 (S Signal Creation Rule):

A quiet (but not peace) general sends out a Stop-Firing signal § at every tick. If two hostile generals
at the border are both firing, then the general with clock 0 will be treated as if it is in Quiet mode. So it
also sends a Stop-Firing signal. The logic for a rear general is symmetric.

If P! (or PT) is conquering, then this rule will be replaced by Rule 2 due to rule priorities.

Procedure Creation-Of-S-Signal- At-Front-General
R3AO01: if ([P}, P1] = [a,q]) and (P' is Firing) then
R3A02: if (P is Quiet) or (P’s clock is 0) then
R3A03: @ N,Q,N,S)p

R3A04: endif;

R3A05: endif;

R4 (B Signal Creation Rule):

A firing front general F'G sends a bullet B to the rear general, if there are no other higher rank signals
than B. Otherwise, F'G resets its state and becomes quiet. Symmetric logic applies for a firing rear general.

Procedure Creation-Of-Bullet- At-Front-General
R4AO01: if ([P, P, P{] = [4,a,d]) and (P is Firing) then
R4A02: if (P; € [B,N]) and (P} € [B, N]) then

R4A03: (a,N,F, P, E)p : {receive left from right, send B}
R4A04: else
R4AO05: (@& N,Q, N, ﬁ)p {reset}

R4A06: endif;
R4AO07: endif;

The following four rules form the Center Locating protocol.

When a front peace general receives an R signal, it starts the Center Locating protocol by marking itself

as the center and sending Verify signals 17, V towards two generals in the army (R7A02.) A peace general
will echo the RV signal when it receives the V signal (Rule R7.) Since the Center Locating protocol

starts at the front general, a center should receive an RV before an RV for most the time. Because RV
signal can not pass through a marked center (R8B03), when a center receives an RV, it will keep the

signal (R6A05) until the right neighbor receives an RV signal. In this case, the center need to be adjusted
to right. So simultaneously, the center clears its C status and signals, and the right neighbor marks itself

as the new center and starts the next phase of Center Locating by sending V.V signals (Rule R5.)

If the size of the army is odd, then eventually the marked center will get RV ,'ﬁ/ signals back at the
same time. The real center then clears the status and sends out the O K signals K and K to its generals
(R6AO07.) In the case of even size army, eventually, the marked center will get an Eff before getting an
ﬁf . At that time, both soldiers know they are center. Therefore at the next tick, both soldiers clear the
status, and one sends an K while the other sends an & (R5A06, R5A08.)

Upon the arrival of an K signal, a peace general will enter the firing mode (Rule R7.)

R5 (Center Adjusting Rule):

Since the Iocatmg protocol starts at a front general, a marked center need to be adjust to the right if
it receives signal RV before RV. If the army suze is even, the marked center P and its left neighbor are
two real centers if P receives signal RV before RV. So both centers broadcast K signal.

Procedure Center-Ad_]ustmg-Rule
R5A01: if (e,C,Q, N RV)p and (a, N, Q, RV, N)p- then

R5A02: (@,N,Q, N N) {clear Center status}
R5A03: elseif (a,C, Q N, RV)P: and (a, N, Q, RV N)p then

R5A04: (a,C,Q, V V) {become the new Center}
R5A05: elseif (a, N Q N *)p and (a,C, @, RV N)Pr then

R5A06: (&, N,Q, K, N) {one of centers, send K}
R5A07: elseif (a, N, Q N, *)p and (a,C, Q, RV N)p then

R5A08: (a,N,Q, N, K)p {one of centers, send K}

R5A09: endif;

R6 (Signals Processing at Center):

A center should only receive N, RV signals, otherwise the system is in an-illegal configuration, so the

center reinitializes its components. A center will try to keep the RV signal until Rule 5 is enabled. A
center sends V or K signals only once, so it releases them after they have been sent.

Procedure'Signals—Processi.ng-At-Center
R6A01: if (a,C,Q,*,*)p then
R6A02: if (Pl & [N,RV]) or (P} & [N,RV]) then

R6A03: (a,N,Q,N,N)p {reset}

R6A04: elseif (Pl € [f\f. E]) and (Ps =RV) then

R6A05: @ C,Q,N, RV)p {keep RV signal}
R6A06: elseif (a,C, Q RV RV)p then

R6AOT: (aaN)Q;K:K)P {broadcast OK signals}
R6A08: elseif (a,C,Q,V,V)p or (a,C,Q,K,K)p then

R6A09: (&,C,Q,ﬁ,ﬁ)p {release V or K signals}

R6A10: endif;
R6A11: endif;

R7 (Signal Processing Rule for Peace Generals):

A peace rear general will always try to send a request signal R to the front general. So, a - peace front
general starts the Center Locating protocol by broadcasting V signals when it receives the R signal. A
peace front general also try to send an R signal to tell the rear general that they should not be firing.

A peace general P sends an RV signal towards center if a verify signal V is received, or enters firing
mode if an K signal is received. Otherwise it receives the signal according to signal ranks.

Procedure Signals-Processing- At-Peace-Front-General
RT7AO01: if P, =R then

RTAO02: (a,C,Q,fZ 1_/')}, {start Center Locating protocol}
RTA03: elseif P, =f/_ then

R7A04: (a,+,Q,N,RV)p {echo V signal}

R7A05: elseif P, =E’ then

R7A06: (3, N,F,N,N)» {enter Firing mode}

RT7AOT: elseif Ps kills P] then

R7A08: (&, N,Q,N,R)p {send R}

RT7A09: else

R7A10: (a,*,Q, P}, E) P {also receive signal from right}
R7A11: endif;

Procedure Signals-Processing- At-Peace-Rear-General
R7BO01: if P; =V then

R7B02: (a,* Q,RV,N)p {echo V signal}

R7BO03: elseif P; =K then

R7B04: (a,N, F, E’,]V)P {enter Firing mode}

R7B05: elseif P, kills P} then -
R7B06: (&, N, Q,_‘é,f_\q;)_p {request Center Locating}
R7BOT: else ’

R7B08: (a,*Q, R, Php {also receive signal from left}
R7B09: endif;

R8 (Signals Passing Rule for Soldier):

First of all, a soldier should not be firing, otherwise the soldier resets its state.

Normally, a soldier receives and passes signals according to their ranks. Signal RV can not pass through
a center to the right, because the center will keep it until either R5 is enabled or an error correction can

be made by R6A03. But, a center P does not need to keep the ‘R_V signal because P and its left neighbor
will know both of them are centers.

Procedure Soldier-Is-Quiet
R8AO01: if (P is Firing) then

R8A02: (3, N,Q,N,N)p {reset, soldier can not be firing}
RBAO03: endif;

10

Procedure Receiving-Left-Signal-At-Soldier
R8BO1: if (P kills P!) or (Pj kills P{) then
R8B02: (3, N,Q,N,N)p {reset}

R8B03: elseif not (a,C,Q, *,}?ﬁ/)pt {EET/’ doesn’t pass through a center}
R8B04: receive P} from left

R8B05: endif;

Procedure Receiving-Right-Signal-At-Soldier
R8CO1: if (Ps kills P]) or (P! kills P]) then

R8C02: (3, N,Q,N,N)r {reset}
R8CO03: else

R8C04: receive P] from right

R8C05: endif;

3.3 Proof of Correctness

It is easy to see that the number of armies is nonincreasing (Rules R1, R2), so eventually the ring will
reach a configuration after which the number of armies is constant. WLOG, we assume the number of
armies is a constant that we call 2m. We write these armies as Aj, Az, - -, Aymm. Members of an army
change during the war, we use A;; to denote the army .A; at time ¢ and FG;, RG;; to denote A;;’s Front
General and Rear General respectively. We will also use F'R;, RG; whenever their meanings are clear. We
also denote the number of members in army A; at time ¢ by Size(Aiy).

Definition. An army .A4; is firing if the following conditions hold:

1. Both -generals of A; are firing, but RG;_1 and FGi;; are both quiet.
9. A; does not have centers (P, = N, V P € A;.)
3. All signals inside A; are either B or N.

Definition. We say that army .A; ; starts the Center Locating protocol at time ¢, and denote it by the
predicate SCL(A;), if

1. Both genel;a,ls of A; are peace generals.
2. FG; has state (a,C ,Q,17, 17) and it is the only center in the army.
3. All other signals inside .A; are either R or N.
Lemma 3. If there is a firing army, then it will continue to be firing until the number of armies decreases.

Proof. By definition and Rules R2, R4. o

Since the number of armies is a constant 2m, there will be no firing army.

Lemma 4. For any i, there are infinitely many ¢ such that both generals of .A4; are quite at time 2.

11

Proof. If one of generals is quiet, then this quiet general will always send a signal with rank higher than
rank(B). So eventually, both generals will be quiet by R4.

In order to keep both generals being firing, only B or N can be allowed in the army by Rule R4.
Since a firing general only sends B signal and B signal clears any center (R6), the army is a firing army.
Contradiction. . . o

Lemma 5. If one of A;’s general is firing for infinitely many times, then there are infinitely many ¢ such
that SCL(A;).

Proof. WLOG assume that front general F'G is firing for infinitely many times. Since .4; can not be
firing, both generals will be quiet by Lemma 4. Thus, sometimes FG is firing and sometimes it is quiet.
A general can be firing again after being quiet only by receiving an K signal. Only center can generate
K signal, and it is no longer a center after sendmg an K signal (see Rule 5 6.) A center can only be

originated at the front genera,l when it receives an R signal. Eventually, the R signal has to be from the

rear general. Since this R survives, the army does not have other higher rank signals. Thus, SCL(A;,) is
true for some ¢. By the same argument, SCL(A;) will be true again some time #' after . o

We now prove the correctness of the Center Locating protocol.

Definition. If an army A;; has centers, then the error-degree of the army is defined as
ED(Ai;) = |dist(FG;4,C1) — dist(RG; 4, C2)|

where (1 is the closest center frem FG;;, C, is the closest center from RG;; (Cy may equal C3.) If A;,
has no centers, then ED(A;) is undefined.

Lemma 6. Suppose that .A; ; starts the Center Locating protocol at time t. Then for some t' > t both
peace generals will receive the OK signal at the same time t’, if both RG;:] 4 and FGjii, p are qulet
Furthermore, we have following;:

¢ = t+3k*+3k+1, if Size(A;) =2k
¢ = t+3k*+5k+2, if Size(A;)=2k+1

Proof. FG; sends out both ‘17 and V at time ¢. Note that R1 — R4 are not enabled.
Case 1 Size(A;;) is odd.

We first show that there is a ats>1 such that ED(A;4,) = ED(A;i:) — 2. RG; will receive the v signal

and send the returmng signal RV at time ¢ + (2k + 1). When RG/’s right neighbor receives RV at time
t+ 2(2k + 1) — 1, the marked center will be adjusted to right by Rule 5. Let t; = t + 2(2k + 1), then
ED(Aiy,) = ED(A,-,,;) -2.

The marked center need to be adjusted k + 1 time for error degree ED to be zero. Then, the center
will send OK signals when both returning verify signals are back at the same time. Because signal K will
kill B signal, we know that both generals of 4; will receive the K signal at time # = ¢ + z, where

T = 22k+1)-14+22k)—1+---+2(k+1)-14k+1
2k+1
= 2) i=3k*+5k+2
i=k+1

12

Case 2 Size(A;;) is even.

Similarly, the ED will decrease to 1 after k adjustments of the marked center. The marked center will

receive RV before I_?,T/ after it sends out the V signals for the k + 1 time. By Rule RS5, both soldiers then
broadcast the OK signal at the next pulse. Therefore, both generals of A; will receive the K signal at
time ¢ =t + y, where - :

y = 22k)—1+422k-1)—1+---4+2(k+1)-1+2k-1+k
2k
= 22é—1=3k2+3k—1
1=k

For an army, the Center Locating protocol starts when the front general receives an E signal, and it
ends when some general receives the K signal. Let CL(z) denote the Center Locating time in a army of
size z. By Lemma 6, it is easy to verify that CL(y) — CL{z)>gify>m.

Lemma 7. For some army .A4;, one of its generals will be firing for infinitely many times.

Proof. Otherwise, we may assume that all generals in the ring are quiet forever. So eventually there will
be no S, K signals after some time #'. Since K can not be generated, eventually all centers will be cleared.
And all V, RV signals will be gone too. But, generals will keep sending R signals, and SCL(A;;) will be

true when the front general receives an R signal at time ¢. But A; will be firing after it finishes the center
locating by Lemma 6, a contradiction. o

Lemma 8. For any army .4;, there are infinitely many ¢ such that SCL(A;).

Proof. If for any army, one of its generals will be firing for infinitely many times, then we are done by
Lemma 5.

Otherwise, by_Lemma 7, there is ¢ and ?p such that after time to; one of A;’s general will be firing
infinitely many times but both generals of .4;_1 are quiet forever.

Whenever .A; finishes a run of the locating protocol, RG; will not receive the K signal. Otherwise A;
will be firing. So FGiy; will be firing infinitely many times. By Lemma 5, army A;;; will start the
locating protocol. Continue the argument, we know that army A;_, will start-the locating protocol after
to. Since F'G;_1 is always quiet, A;—2 will be firing after it finishes the center locating by Lemma6. =

Lemma 9. If there are only two armies, then one of them will be a firing army.

Proof. Let two armies be .A and B. Suppose otherwise, then A and B will start the Center Locating
protocol by Lemma 8. WLOG, assume A finishes its Center Locating not later than B does. If A finishes
it early, then .4 will be firing. If both A and B finish the locating protocol at the same time ¢, then generals
of two armies have different clocks. By Rule R3, the army with clock 1 will be firing. B

Lemma 10. I no firing army can be generated, then all armies will have the same size.

Proof. By Lemma 9, the number of armies is a 2m, and m > 1. By Lemma 8, we may assume
that we are at some time ¢’ and all armies have run Center Locating protocol at least once (this gives us
clean ring configurations.) Since no firing army can be created, the size of each army will not change. Let
a1,02,- -, G2m be the their sizes. We need the inequality that CL(b)—CL(a) > aif b > a.

Assume that at time t;, RG receives the K signal but F'G; does not receive the K because RGam
receives the K at t,, before t;, so FG starts to send cancel signal § from t2,. Let pom,p1 be the time

13

FG1, RG; become peace general respectively. We will show that as,, < a;.

Assume by contradiction that ag, > a; + 1. Then pa, < P1, otherwise 4; could have started the
Center Locating protocol before Aj,, starts its Center Locating protocol, so .A; should finish the Center
Locating protocol and become the firing army before Ay, does. Since t, = p; + a; + CL(a;) and
tom 2 Pom + G2m + CL(a2m)! we have :

P2m + @2m + CL(a2m) < tam < t1 = p1 + a1 + CL(ay)

a1 < CL(azm) — CL(a1) < p1 — Pam + @1 — @om < P1— Pom

This means that RG; is quiet at py,,, otherwise RG; should receive an E signal and become peace general
at time pa, + @1 (< p1.) Therefore, FG, is firing at time py,, until time p;. But A, itself is not firing, its
general F'G; can be firing for at most ay ticks. Hence we have

a1 < CL(azm) — L(a1) < p1 — pam < a2

Ajp will finish another run of Center Locating at time z = t5,, + 2a, +CL(a1). Az, will finish another
run of Center Locating at time y > t,, + a2 + CL(a2y,) and Ay will finish another run of Center
Locating at time z > t3, + a1 + CL(az2). But z < y and z < z, this means A; will be firing.

Thus, we have a2, < a;. Similarly, we can show that a; < a;4; for all .]

Theorem 3. If ring size is odd or 2p for prime p, then the Firing Generals protocol guarantees that the
ring converges to a unison configuration in at most O(n®) steps.

Proof. If Firing Generals fa.ils,. then by Lemma 9 and 10, the ring size n = 2am, where m > 1,a > 1
and 2m is the number of armies and a is the size of each army.

The Center Locating protocol takes at most O(n?) steps, then the number of armies will decrease. Thus
the convergence span is O(n?). N

3.4 Other Protocols

By the proof of Lemma 10, if Firing Generals protocol fails then every army have the same size a and .A4;
always finishes the Center Locating protocol some b; < a ticks before A;,; finishes the Center Locating
protocol. If A; finishes a run of Center Locating protocol at time ¢, then .A4; has one firing general at
time t; = ¢t — Zf’“ b;. This means .A; starts the Center Locating protocol after ¢;. Hence

2m

CL(a)< > _bi<2ma=n
1

Corollary 3. If the Center Locating protocol can be modified to take more than n ticks, then the modified
Firing Generals protocol is self-stabilizing.

In the light of above Corollary, we can derive other self-stabilizing protocols by allowing processors to
have more states (in a function of n.) For instance, we add another component to the state of a processor
and this new speed control component has \/n values. When a front general needs to run the Center
Locating protocol, it first uses its and neighbor’s speed control components to count to n ticks then actually
starts the Center Locating protocol. Other protocols of less than O(+/n) states per processor can be
similarly obtained by using the speed control component.

14

We can slow down our Center Locating protocol by a factor of 4 (CL(a) > 2a*), and obtain a protocol
that works also for ring of size 2p?, where p is a prime. Because for this kind of rings to have all armies of
same size, the army size must be p and CL(p) > 2p® = n.

4 Lower Bounds on Convergence Span

Theorem 4. For any self-stabilizing k-clock protocol SSP, CS(SSP) > dia(G)deg(G)/2.

Corollary 4. Any self-stabilizing k-clock protocol for ring of size n has convergence span of n/4 if ring
is bi-directional, and has convergence span of n/2 if ring is unidirectional.

The easy proofs will be given in the full paper.

Acknowledgements: We want to thank referees for their valuable suggestions regarding the presentation
of the paper.

References
[1] A. Arora, S. Dolev and M. Gouda. Maintaining Digital Clocks In Step. Parallel Processing Letters
1(1991), pp. 11-18.

[2] B. Awerbuch and R. Ostrovsky. Memory-efficient and self-stabilizing network reset. In Proceedings
of the 13th Annual ACM Symposium on Principles of Distributed Computing (1994)

[3] M. G. Gouda and T. Herman. Stabilizing Unison. Information Processing Letters 35 (1990), pp.
171-175. e

[4] T. Herman and Sukuma Ghosh, Stabilizing Phase-Clocks, Technical Report, University of Towa
(9/1993).

[5] A. Israeli and M. Jalfon. Token management schemes and random walks yield self stabilizing mutual
exclusion. In Proceedings of the 9th Annual ACM Symposium on Principles of Distributed Computing
(1990), pages 119-130.

[6] G. Itkis and L. Levin. Fast and lean self-stabilizing asynchronous protocol. In Proceedings of the 36th
Annual IEEE Symposium on Foundations of Computer Science (1994).

[7] G. Itkis, C. Lin and J. Simon. Deterministic, Constant Space, Self-Stabilizing Leader Election on
Uniform Rings. submitted to WDAG 95

[8] C. Lin and J. Simon. Observing Self-Stabilization. Proceedings of the 11-th Annual ACM Symposium
on Principles of Distributed Computing (1992) pp. 113-123.

[9] A. Mayer, Y. Ofek, R. Ostrovsky and M. Yung. Self-Stabilizing Symmetry Breaking in Constant-
Space. STOC’92, pp. 667-678.

[10] A. Pancholi. Master Thesis. Department of Computer Science, Texas A&M, 1994.

[11] J.B. Rosser, L. Schoenfeld. Approximate formulas for some functions of prime numbers. Illinois
Journal of Math. Vol 6(1962) pp. 64-94.

15

1

.

1

—1

—3

1

— 1

Paper Number 11

Self-Stabilizing Dynamic Programming Algorithms on Trees

Sukumar Ghosh, Arobinda Gupta, Mehmet Hakan Karaata, and Sriram V. Pemmaraju

Self-Stabilizing Dynamic Programming Algorithms on
P Trees

Sukumar Ghosh™ Arobinda Gupta
Mehmet Hakan Karaata Sriram V. Pemmaraju

April 29, 1995

Abstract

Dynamic programming is a bottom-up approach that is typically used for designing algorithms
for optimization problems. Many graph-theoretic optimization problems that are NP-hard in general,
can be efficiently solved, using dynamic programming, when restricted to trees. Examples of such
problems include maximum weighted independent set and minimum weighted edge covering. In this
paper, we present a technique to translate certain dynamic programming algorithms into distributed, self-
stabilizing algorithms that run on trees. The resulting self-stabilizing algorithms are deterministic and
uniform. We prove the correctness of the algorithms produced by our translator assuming a distributed
scheduler with read-write atomicity. We also show that on a tree with radius 7, our algorithms stabilize
in no more than 2r + 3 rounds.

Keywords: Centers, Distributed algorithms, Dynamic programming, Self-stabilization, Trees.

1 Introduction

Dynamic programming is a bottom-up approach that is typically used for designing algorithms for opti-
mization problems. It is similar to the divide-and-conquer strategy in that a problem is solved by solving
and combining solutions of subproblems. It differs from the divide-and-conquer strategy in that after a
subproblem is solved, its solution is saved to be reused later, thus avoiding excess work in case subprob-
lems are shared among several problems. Two common examples of problems that have efficient dynamic
programming solutions are the matriz-chain multiplication problem and the longest common subsequence
problem [7]. Many interesting graph-theoretic optimization problems, when restricted to trees, can also
be efficiently solved using the dynamic programming paradigm. A few examples of such problems are
mazimum weighted matching, mazimum weighted independent set, minimum weighted edge covering, and
minimum weighted dominating set. In this paper, we present a general method for translating the dynamic
programming solutions to these types of problems into deterministic, uniform, self-stabilizing distributed
algorithms that run on trees. We then show that our translation scheme produces algorithms that are

correct and time-optimal.

*This author’s research was supported in part by the National Science Foundation under grant CCR-9402050.

Self-stabilizing algorithms are attractive because of their inherent tolerance to transient faults in the
system. Since no initialization of variables is required for the correctness of the algorithm, the algorithm
converges to a desired state starting from any arbitrary state in which the system may be in after a
transient fault. In addition, some self-stabilizing algorithms may be capable of adapting to a dynamically
changing topology. In ﬁarticular, our self-stabilizing algorithm can adapt dynamjcé;]ly to arbitrary addition
or deletion of nodes and edges in the tree, as long as the tree topology is maintained.

The rest of this paper is organized as follows. Section 2 describes the dynamic programming paradigm,
focusing on two examples. Section 3 presents our model of computation. A brief description of related
work and discussion of how it compares with our work is presented in Section 4. Section 5 features a
general method for translating certain types of dynamic programming algorithms into distributed, uniform,
deterministic, self-stabilizing algorithms that run on trees. In Section 6 we prove of correctness of the

algorithms resulting from our translation scheme.

2 Dynamic Programming

A dynamic programming algorithm for a problem typically consists of two or more phases. In the first
phase, the smallest instances of the problem, called base problems, are solved and their solutions are
stored. In each successive phase, larger instances of problems are solved by combining solutions of smaller
instances. Note that the sc:tlu’cic:q;T of each instance is stored for future reuse and therefore when a solution
to a smaller instance is required, it is simply fetched from a store. The process outlined above proceeds
from the bottom, upwards, solving larger and larger instances, until the original instance of the problem
is solved. The following is a simple example to illustrate the dynamic programming paradigm.
Problem: Compute C, the number of subsets of size r of a set of size n, where n > r.

The base problems are: Compute C’}‘, 1<k < n,£e€{0,k}. The base problems have solutions: O,
and C,f =1y forany: by 1< Br<im C'é‘, for any k, £, where 1 < £ < k < n, can be computed
using the following recurrence: C} = C;7' + C’k__ll. The computations are done in a bottom-up fashion
starting with the base subproblems and computing C} only after C’f‘l and Of_"ll have been computed.
Care is taken to store the result of each computation for later reuse. It is easy to see that the dynamic
programming algorithm sketched above can be implemented in O(nr) time using O(r) space. Note that
the recurrence relation expressing Cf in terms of Cf‘l and C’é‘:ll suggests a simple divide-and-conquer
algorithm that computes C’f"l and C"“_'l1 independently and adds the results. But this naive approach
fails to reuse solutions of subproblems and results in a huge amount of overlapped, and thus, unnecessary
computations. It is easily verified that the time complexity of this divide-and-conquer algorithm is Q(27)
and it is therefore hardly a competitor for the dynamic programming approach. For more details on the
dynamic programming paradigm and examples of this approach, refer to (4, 7).

We now turn our attention to a class C of problems that take as input an undirected, and possibly

weighted!, tree T = (V, E) and can be solved using the dynamic programming approach. In particular, we

require that each-problem P € C satisfy the following decomposability condition:

Let T be rooted at any node r € V. There exists problem P(i) with solution S(i) associated
with each node i-€ V such that

(a) P(i) can be solved by solving and combining solutions of P(j) for all children j of v. More
precisely, the following relationship holds:

(i) = fi(5(j1), 5525 - > S(K))s

where 71, ja, - - - j& are children of 2 and fi is some computable function with k£ arguments.

Note that since T is rooted, the parent-child relationship is well-defined.

(b) S(r) contains a solution of P.

Thus, assuming that P satisfies the decomposability condition, P can be solved by the following generic
algorithm:

Step 1. Arbitrarily oot T at a noder € V.

Step 2. For each node ¢ whose-children are nodes j1,j2,- - -, jk, compute S(i) using the equation S(7) =

Of course, to obtain an officient version of the above algorithm, one must adopt a bottom-up approach,
starting at the leaves and computing S (i) only after S(j) has been computed for all children j of i. The
algorithm terminates when §(r) is computed. Note that by part (b) of the decomposability condition, S(r)
contains a solution of P. Also note that for a leaf v, the number of children, k = 0, and fo is a constant
function. As an example of this approach we provide a dynamic programming algorithm for the mazimum
weighted independent set problem, restricted to trees. Note that this problem is NP-hard for arbitrary
graphs [9]. :

Let G be a node-weighted graph in which each node i has a positive, real weight w(i). An independent
set in G is a set of nodes such that no two nodes in the set are adjacent in G. The weight of an independent
set is the sum of the weights of all nodes in the set. A mazimum weighted independent set in G is an
independent set with maximum weight. The mazimum weighted independent set problem, restricted to
trees, is defined as follows.

Problem: The input is a node-weighted tree T = (V, E) in which each node 1 has a positive, real weight
w(i). Find a mazimum weighted independent set in T'.
Though the problem asks that we compute a maximum weighted independent set in T, we instead focus

on the “smaller” problem of computing the weight of a maximum weighted independent set in T'. We will

1\Weights may be associated with edges, nodes, or both.

subsequently show that it is a simple step to go from the weight to the independent set itself. Define the

following three variables for each node i € V' as follows.

W*(i) = weight of maximum weighted independent set that
includes 7 in the subtree rooted at i

W=(i) = weight of maximum weighted independent set that does
not include ¢ in the subtree rooted at i

W(i) = weight of maximum weighted independent set in the

subtree rooted at i

Thus to each node ¢ € V, we can associate a problem P(i): Compute W1(z), W~ (i), and W(2).
The solution S5(z) of P(i) is the triple (W*(¢), W=(i), W(i)). Note that since W(r) is the solution of
our problem, computing S(r) does indeed solve our problem. The following equations provide a way of

computing $(¢) using values of 5(5) for all children j of i. We use C; to denote the set of children of a

node i.
W@ = Y W(H) + w()
JEC;
W=(i) = > W()
JEC; =
W(i) = max (WH(), W(3)

Note that for a leaf node ¢, C; = § and therefore W(i) = W+(i) = w() and W~ (i) = 0.

Figure 1(a) shows a node-weighted tree with the node weights shown next to each node. Figure 1(b)
shows the tree with the values of (W (%), W*(i), W~(¢)) for each node i. It can be easily verified that the
value of W(r) is indeed the weight of a maximum weighted independent set in 7. A particular maximum
weighted independent set IS can be easily computed starting at the root and traversing the ﬁree in a
top-down fashion. More precisely, suppose that flag(i) is a boolean variable associated with each node $;
that indicates whether node 7 € I'S. Then, flag(:), for all i € V can be computed as follows:

(2) flag(r) = (W+(r) > W(r).
(b) For any node ¢ with parent p;, flag(i) = (- flag(p;)) A (WH(3) > W~(i)).

Thus IS = {i € V| flag(i) = true}.

3 Model of Computation

Suppose that a problem P € C takes as input a tree T'. Our goal is to translate the dynamic programming
algorithm that solves P into a distributed, deterministic, uniform, self-stabilizing algorithm that runs on

T. In other words, we use T as the underlying communication network. Therefore, each node ¢ in T

(45,34,45)

(34,34,26) (11,11,3)

(14,11,14)

(12,12,0) (L,1,0) (2,2,0)

(44,0) (7,7,0) (3,3,0)

(2) (b)

Figure 1: Solving maximum weighted independent set on a tree

corresponds to a process, called process ¢, that executes a program asynchronously and each edge {i,j}in
T corresponds to a bidirectional connection between process i and process j. Though we give processes
names for notational convenience, processes are all identical and are therefore anonymous. Each process
i contains a finite set of local shared variables. These local shared variables in process i can be read by
process ¢ and any of its neighb(:;rs, but can be written onto by process : alone. The state of a process
is given by the values of its variables. If we allow S; to denote the set of states of process i, then any
clement in the cartesian product [T;ev Si is called a global state. Guarded statements are used to specify
the progra,r-n executed by each process. A guarded statement is of the form G — A, where G is a boolean
condition called a guard and A is the corresponding action that is executed only if G is true. A global
state s is called stable if in state s all guards in all processes are false.

We assume the presence of a distributed scheduler. A distributed scheduler can be thought of as a
collection of private or local schedulers — one for each process. The local scheduler for process i arbitrarily
selects one guard from among all guards in process i. Process i then evaluates the selected guard and
executes the corresponding action, if the guard evaluates to true. The local scheduler then chooses an
arbitrary guard again and the cycle repeats. The distributed scheduler is assumed to be fair only in the
weakest possible sense: in any infinite sequence of guard selections by a local scheduler, each guard that
can be selected is selected infinitely often. The local schedulers in different processes are independent, thus
allowing for overlapping execution of distinct processes. Therefore, we need to be precise about the level
of atomicity being used. We assume read-write atomicity. That is, only the reading of a single variable or
the writing onto a single variable are assumed to be atomic. This implies that the evaluation of a guard or
the execution of an action by a process is a sequence of atomic steps that may be arbitrarily interleaved

with atomic steps by other processes.

Fixing the level of atomicity allows us the luxury of viewing the execution of a distributed program
in this model of computation as a sequence of atomic steps. In particular, we say that a sequence X =
50,21, 81, T2, - . . containing global states g, 51, ... and atomic steps z;, 7o, . . . is an ezecution sequence if for
each ¢ > 1, z; causes a state transition from global state $i—1 to s;. Note that states s;_; and s; need not be
distinct. The execution sequence X is stabilizing if it contains a state s; that is stable. Clearly, once s; is
reached, processes take no further actions and as a result, the global state remains unchanged. A program
is self-stabilizing if every infinite execution sequence is stabilizing. This simplified view of self-stabilization
is sufficient for our purposes. In general, self-stabilizing programs can oscillate forever in a set of states
(see for example Dijkstra [8]). '

We measure the time-efficiency of a distributed, self-stabilizing program in terms of its round complezity.
Our definition is similar to the one employed by Arjomandi, Fischer, and Lynch [2]. To define round
complexity, we need the notion of a move. A process is said to make a move when it evaluates a guard
(selected by its local scheduler), finds the guard to be true, and then takes the corresponding action. Note
that if a process evaluates a guard and finds it to be false, then it does not take the corresponding action,
and is not considered to have made a move. Under the assumption of read-write atomicity, a move may
consist of several atomic steps: the first few as part of guard evaluation and the next few as part of the
action execution. A process ¢ is said to be alive in a global state s, if there exists an execution sequence,
X = 30,21, 81, %2,... that contains a move by process i. The implication is that if a process ¢ is not alive
in a global state sg, then from that point on, no matter which guards are selected by ¢’s local scheduler, 7
takes no further dﬁtion, and its state remains unchanged. Of course, moves by other process also cannot
change the state of . Also note that no process is alive in a stable state. Let X = $0,%1,51,... be an
infinite execution sequence of a self-stabilizing program. The round complezity, R(X), of X can be defined
as follows. If X does not contain the execution of at least one move by each process that is alive in s,
then R(X)= 1. Otherwise, éxpress X as X = X, X,, where X,, is the minimal prefix of X such that every
process that is alive in sp makes a move in X,. Since X, is minimal, its last element is an atomic step
and therefore the first element of X is a global state. Xp is one round of the execution sequence. Deﬁne
R(X) = R(X;) + 1. The round complexity of the self-stabilizing program is the maximum R(X) over all
infinite execution sequences X. Round complexity is a realistic measure of time complexity in our model
because it pays attention to the “slowest” process, by ensuring that a round is completed only when all

processes, including the slowest process, have made at least one move.

4 Related work

In a related work, Collin, Dechter, and Katz (CDK) [5, 6] present distributed self-stabilizing solutions for a
class of constraint satisfaction problems. The input to a constraint satisfaction problem consists of a finite
set of variables along with a finite set of constraints among subsets of variables. The solution to the problem

Is an assignment of values to variables such that all constraints are satisfied. CDK restrict their attention

to constraint satisfaction problems in which all constraints are binary, that is, all constraints relate pairs of
variables. In this-case, a constraint graph can be associated with the constraint satisfaction problem. Each
node in the constraint graph represents a variable, and an edge between two nodes represents a binary
constraint between the corresponding variables. Assuming that the underlying communication network is
the constraint graph of the problem, CDK provide a distributed, deterministic, self;sta,bilizing algorithm to
solve any constraint satisfaction problem with binary constraints. This algorithm assumes a special node
and is therefore not uniform. For trees, CDK provide a uniform solution. However, this solution requires
the presence of a central scheduler and is not guaranteed to stabilize otherwise.

A dynamic programming algorithm can also be viewed as the systematic imposition of constraints
among subsets of variables. But, typically these constraints are not binary. For example, in the mazimum
weighted independent set problem discussed earlier, the variable W™ (1) is related to all variables in the set
{W=(4)|j € C;}. Thus the approach of CDK, that only applies to binary constraint-satisfaction problems,
cannot be applied to the types of problems we are considering. In theory, the constraints in a dynamic
programming problem on trees can be converted into binary constraints as follows. Choose a root for
the tree and group all variables in a level into one variable. Notice that now all constraints are binary
and we have a constraint graph that is just a path. However, since the dynamic programming paradigm is
inherently bottom-up and CDK’s algorithms adopt a top-down approach, this yields an extremely unnatural
and inefficient solution to dynamic programming problems. Furthermore, as compared to CDK’s algorithm,

it is easy for our algorithm to adjust to changes in structure of T'.

5 Self-stabilization and Dynamic Programming

In this section, we present a general method for translating the dynamic programming algorithm for any
problem P € C into a distributed, deterministic, uniform, self-stabilizing algorithm. If the input to Pis a
tree T = (V, E), then our self-stabilizing algorithm assumes that T is its underlying communication graph.

The self-stabilizing algorithm for P can be viewed as having two phases, each phase roughly correspond-
ing to a step in the generic algorithm (presented in Section 2) that solves P. In phase 1, T is converted
into a tree that is either singly or doubly rooted and in which every node knows the identity of its children
and its parent. We use a modification of the center-finding algorithm of Karaata, Pemmaraju, Bruell, and
Ghosh (KPBG) [10] for this purpose 2 There are several reasons for doing so. First, the center-finding
algorithm roots T at one or two adjacent roots. As we will show later, since the two roots are adjacent, it
is unnecessary to break symmetry and select one of them, before sending T" on to Phase 2. Thus we do not
have to Tesort to either randomization or unique process ids to break the symmetry. Second, we will show
in Section 6, that the time-complexity of our algorithm depends on the height of the roots. By choosing

centers as Toots we obtain roots with minimum height and thereby provide 2 time optimal algorithm.

2CDK [5, 6] also use a similar phase in their work.

Program for each process i:

do
(iisaleaf) A (h(¢)#0) — h(i):=0

O (iisnot aleaf) A (h(i) # 14 2ndmaz(Ny(i)))— (i) := 1 + 2ndmaz(Ny(i))
od ‘ ; '

Figure 2: The center-finding algorithm

In phase 2, the problem P is solved on the rooted tree constructed in Phase 1. In this phase, each node
attempts to assign values to its variables that are consistent with values of its childrens’ variables. Note
that the above view of our algorithm as having two distinct phases is only for purposes of explanation. In
the self-stabilizing algorithm for P, the two phases are not distinct and occur in an arbitrarily interleaved
fashion.

In the next subsection, we describe the center-finding algorithm of KPBG [10]. We then show how the
constraints in a dynamic programming solution can be embedded on top of the center-finding algorithm
to yield a distributed self-stabilizing algorithm that solves P.

5.1 Constructing the Rooted Tree

Let d(z,7) denote the distance, the length of a shortest path in 7', between modes 7 and J. Then e(7) =
maz{d(i,j)| j € V} denotes the eccentricity of a node 7, the distance between i and a farthest node from
tin T'. A center of T is a node with minimum eccentricity. The eccentricity of-a center is called the radius
of T. It is well-known that a tree has one or two adjacent centers [3].

The center-finding algorithm of KPBG [10] is shown in Figure 2. This algorithm runs on T and each
node 7 € V corresponds to a process that has a local variable A(3), referred to as the h-value of node i.
The h-value of a node can initially take on any non-negative integer value. Let N (i) denote the set of
neighbors of ¢. In the algorithm in Figure 2, N (i) denotes the multi-set of h-values of the neighbors ef 7 and
2ndmaz(Np(?)) denotes the second largest element in the multi-set Nj(i) More precisely, 2ndmaz(Np(2))
is equal to the second element in the sequence obtained by ordering the elements in Nj(%) in descending
order. Clearly, the h-values of the nodes in T constitute a stable state of the center-finding algorithm if
for each leaf 7, (i) = 0, and for each non-leaf i, A(7) = 1 + 2ndmaz(N4(i)). To explain the meaning of
h-values of nodes, we define the height of a node as follows. Let Ty = T and for any £ > 0, let T; be the
tree obtained from 7;_; by removing all leaves (and the incident edges) from T;. For any £ > 0, a node i is
called a height-£ node if it is a leaf in T}. If 1 is a height-£ node, then we write height(i) = £. KPBG show
that in a stable state of the center-finding algorithm, h(i) = height(:) for all i € V. Thus, the h-values of
nodes eventually (after the state has become stable) represent the heights of the nodes. Heights of nodes

in a tree have several useful properties [10].

h(1) = 0 h(3) = 2 h(6) = 1

Figure 3: A tree whose h-values constitute a final state of the center-finding algorithm.

Proposition 1 Suppose that i is a height-£ node in T'.

1. Ifi is not a center of T, then i has ezactly one height-(£ 4 1) neighbor. The rest of the neighbors all
have height less than or equal to £ — 1. If £ > 0, then i has at least one height-(£ — 1) neighbor.

2. If i is a unique center of T, then all neighbors of i have height less than or equﬁl tof—-1. If£>0,
then i has at least two height-(£ — 1) neighbors.

3. Ifi is one of two adjacent centers of T, then i has ezactly one height-£ neighbor (the other center). All
other neighbors have height less than or equal to £—1. If£> 0, then i has at least one height-(£ — 1)

neighbor.

Proposition 1 has the following immediate corollary.

Corollary 2 Let r be the radius of T and let Hy be the height-£ nodes in T. The nodes in T are partitioned
by {HﬂsHla"wHT}‘ !

Figure 3 shows a tree whose h-values constitute a final state of the center-finding algorithm. Notice that
the two adjacent centers, 3 and 4, have equal h-values. KPBG [10] proves the correctness of the center-
finding algorithm and establishes an upper bound on the total number of moves made by the algorithm
assuming a central scheduler. In Section 6, we establish an upper bound on the round complexity- of the
center-finding algorithm assuming a weaker model of computation: a distributed scheduler with read-write
atomicity.

It is easy to use the h-values to view T as a rooted tree. For any node %, define
parent(i) = {j | j € N(i) and h(j) > h(3)}.

Proposition 1 implies that when the A-values constitute a stable state of the center-finding algorithm, then
pa'rent(.i) _ (0 if i is a center; otherwise parent(i) is a singleton. Furthermore, if j € parent(i), then
i ¢ parent(j). Thus we have a tree rooted at either one or two adjacent nodes and every node has a
consistent view of the identity of its parent and its children. If the length of the longest path in T is odd
then T has a single root and we have successfully completed Step 1 of the generic algorithm presented in

Section 2. However, if the longest path in T has even length, then we have two roots and to complete Step

9

1, we need to choose one of the two roots. However, since this cannot be done in the model of computation
we have chosen, ‘we either have to resort to randomization, sacrificing determinism, or to distinct process
ids, sacrificing anonymity. We do neither and pass to Phase 2 a tree that might have two adjacent roots.
We adjust Phase 2 slightly to handle the case of a doubly-rooted tree.

5.2 Self-stabilizing Dynamic Programming Algorithm

In our first attempt, we modify the center-finding algorithm by introducing an additional variable S(i)
in each process i. Note that we assume that (i) is a single variable only for the sake of simplicity. In
general, §(i) represents a finite collection of variables derived from the dynamic programming solution
of P. We modify the center-finding algorithm into a self-stabilizing algorithm for solving P, by simply
attaching a guarded statement that ensures that each process i sets 5(i) to a value that is consistent with
the values of S(j) for all children j. For a leaf process i define a predicate correct(i) as: correct(i) =

(¢ is a leaf) A (h(7) = 0). For a non-leaf process ¢, define correct(i) as:
correct(i) = (i is not a leaf) A (h(i) =1+ 2ndma:c(Nh(i))).

Let Ci = {j | j € N(3) and h(5) < h(i)}. Process i believes that if € C; then j is indeed its child in the
rooted tree constructed in Phase 1. For notational convenience, we drop the subscript £ in fi and denote
the sequence S(j1),5(42),..-,SGk) by S(j1,72,. . ., Jk). After verifying that its A-value is consistent with
the h-values of its neighbors (that is, correct(i) = true), process i attempts to make S(7) consistent with
5(7) for all j € C; by executing the action $(i) := f(S(C;)). This is shown in guarded statement S3 in
the program in Figure 4. While this approach is correct if T has a single roc;t, it does not work if 7" has
two adjacent roots, say ; and 75. In this case, neither § (71) nor S(r2) contain the solution to the instance
of P that we are interested in solving. To get around this problem, we assume that each node i has an
additional variable 5°(¢). §(i) is computed as described above while 5'(3) is computed only when process i
detects that it is one of two roots. In particular, when process i detects that it is one of two roots, then it
computes a value for §’(¢) that is consistent with S(j) for all § € C; assuming that the adjacent root is also
its child. The intuition here is that each root attempts to act as the sole root of 7. To be more precise,

for each process i and for each neighbor j € N(7) define the predicate:
two.roots(i, j) = (correct(i)) A (¥k € N(i) : h(s) > h(k)) A (h(3) = h(3)).

Each process i, that finds the predicate 35 € N(3) : two._roots(i, j) true, executes the action §'(7) =
f(S(C(¢) U {s})), if necessary. This is shown in guarded statement S4 in the program in Figure 4. As a
result, if T has one root 7 then S(r) contains a solution of P; otherwise if T has two roots r1 and 72, then
both $'(r1) and S’(r;) contain a solution of P. The complete self-stabilizing algorithm, called the dynamic

programming algorithm, that runs on T and solves problem P, is shown in Figure 4.

10

Program for each process i
do

51 (i is a leaf) A (h(2) # 0)

§2 0 (iisnotaleaf) A (h(i)#1+ 2ndmaz(Ny(2)))

S3 0 correct(i) A S(3) # f(S(Cy))

S4 0 3j € N(i):tworoots(i,j) A §'(i) # f(S(CiU i)
od

h(z):=0

k(i) := 1 + 2ndmaz(Ni(7))
S(i) = f(5(C3))

S'(3) = f(8(C: U {i}))

e d 3

Figure 4: The dynamic programming algorithm
6 Proof of Correctness

In this section, we show that the round complexity of our dynamic programming algorithm is at most
27 + 3 rounds, where 7 is the radius of 7. A global state s is said to be h-stable, if in state s, for each node
i € V, the predicate correct(i) holds. In other words, in an h-stable state the h-values of all processes are
correctly set and the guards corresponding to statements 51 and S2 are false in all processes. We first
show, in Theorem 4, that the dynamic programming algorithm, starting from an arbitrary initial state,
requires at most 7 + 1 rounds to reach an h-stable state. Subsequently, in Theorem 6, we show that the
dynamic programming algorithnl, starting from an h-stable state, requires at most r + 2 rounds to reach a
stable state. Theorems 4 and 6, fogether, give the claimed upper bound of 27 -[— 3 on the round complexity
of the dynamic programming algorithm.

For our proofs we assume that each move by a process consists of (a) a sequence of reads through which
the process gathers enough information to evaluate a guard, followed by (b) a sequence of reads followed
by a single write through which the process executes the corresponding action. Thus the last atomic step
of each move is assumed to be a write-step. As in the RAM model [1], we assume that each process
has sufficiently many local registers to store temporary results of calculations. As mentioned earlier, for
simplicity we also assume that §(7) is a single variable. Our proofs can be easily extended to the tase in
which (i) is a finite collection of variables.

To prove Theorem 4 we need the following lemma.

Lemma 3 Let i be a height-£ node. For any k > 0, after at most k rounds'of the dynamic programming
algorithm, '

h(1)=£ ifL<k

R(i) =k ifL>k.
Proof: The proof is by induction on k.

Base Case: Let k = 0. Any height-£ node i € V satisfies ¢ >k = 0. Since we assumed that the initial
h-values of all nodes in T’ are non-negative, it follows that after 0 rounds, h(i) > k = 0,for all i € V.

11

Therefore, the lemma is true for & = 0.

Induction Hypothesis: Suppose that the lemma is true for some & > 0.

Induction Case: Suppose that round % + 1 is the execution subsequence sg,21,$1,...,8p-1,%,. Also
suppose that atomic step z, causes the global state to change from 8p-1 to s,. We prove the following
claim about the h-values of nodes in states s, 81, .., Sp. :

Claim: The h-value of any height-£ node i satisfies the following property in any state 5;,0<7i<p:
1. If £ < k, then h(7) = L.

2. If £ = k and process ¢ has completed at least one move in round %+ 1 prior to state s;, then h(7) = £.
Otherwise, if £ = k, then A(7) > k.

3. If £ > k and process ¢ has completed at least one move in round k + 1 prior to state s;, then
h(i) > k 4 1. Otherwise, if £ > k, then h(4) > k.

Proof of Claim: The proof is by induction on j.

Base Case: j = 0. Immediately follows from the induction hypothesis that claims the truth of the lemma
after k£ rounds.

Induction hypothesis: Suppose that the claim is true for some j > 0.

Induction case: We want to show that atomic step z;4;, that causes a state transition from state s; to
state s;1, preserves the truth of the above claim in state $j41- If ;41 is a read-step then, $j+1 = $; and
Zj+1 is not the last step in a move by process . Together, these two facts imply the continued truth of
the claim in state s;;;. If z;4; is a write-step, then it can write onto variables h(i), §(2), or §'(¢). In the
following, we treat writing onto k(i) as one separate case and writing onto S(i) or §’(¢) as one separate

case.

Case 1. z;4; writes onto h(z). It is easily seen that if £ = 0 (that is, node i is aleaf) then z;4; preserves
the truth of the claim in state sj;;. So we suppose that £ > 0. Prior to writin-g onto k(%) in atomic step
Tj41, process i reads the h-values of neighbors in atomic read-steps. Since these atomic read-steps occur
prior to state s;, the h-values of neighbors that are read, satisfy the claim. We now consider three cases

depending on whether i is a non-center, the unique center, or one of two centers in 7.
1. ¢is not a center of T'. Let j; be the height-(£ + 1) neighbor and j, be a height-(£ — 1) neighbor of i.
2. ¢ is the unique center of T. Let j; and j, be two height-(£ — 1) neighbors of i.

3. 1is one of two centers of T'. Let j; be the height-£ neighbor (which is the other center) and let j; be
a height-(£ — 1) neighbor of :.

The existence of j; and j, are guaranteed by Proposition 1 and by the fact that £ > 0. It is easy to see by
applying the induction hypothesis that node ¢ calculates a value for 2ndmaz(Ny(7)) that is equal to the

h-value of j; that it reads. In particular, we consider the following three cases:

12

1. £ < k. By the induction hypothesis i reads h(j2) as £ — 1. Therefore ¢ calculates the value of
ondmaz(Np(i)) as £ — 1. As a result z;41 writes the value £ onto h(i). Thus h(i) satisfies item (1)

of the claim in ;1.

9. ¢ = k. By the induction hypothesis, process i reads a value for h(j,) that satisfies h(jz) = {—1 = k—1.
Therefore, i calculates 2ndmaz(Ny(i)) as £ — 1 and zj41 writes £ into h(i). This, along with the fact
that 2,41 is the last atomic step in a move by process 7 in round k + 1, ensure that h(7) satisfies item

(2) of the claim in $j41.

3. £ > k. By the induction hypothesis, process i reads a value of h(jo) that satisfies h(jo) > k. This
implies that the value calculated for ondmaz(Np(3)) satisfies 2ndmaz(Np(i)) > k. Therefore ;4
writes a value greater than or equal to k + 1 onto h(2). This, along with the fact that z;4 is the last

atomic step in a move by process 7 in round k + 1, ensure that h(i) satisfies item (3) of the claim in

Sj41-

Case 2. z;41 writes onto §(i) or §'(i). To write onto 5(i) or §'(i), process ¢ must be execute guarded
statement S3 or S4. In order to execute the action in $3 or 54, process ¢ must first verify that correct(z)
is true. Process i does this by reading the h-values of neighbors in a sequence of atomic steps, calculating
2ndmaz(Np()), and then venfymg that h(7) is one more than the calculated value of 2ndmaz(Np(7)). By
using the same a,rgument as in Case 1, we see that there exists a state sjr, 0 < j' < j+ 1, such that A(%)
satisfies the claim in state s; and h(7) remains unchanged from state s;r 10 Sj41. End of proof of claim.

Since the execution of a round consists of a move by every process, the proof of <ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>